Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6529–6538 | Cite as

ZnO flower-rod/g-C3N4-gold nanoparticle-based photoelectrochemical aptasensor for detection of carcinoembryonic antigen

  • Zhizhong Han
  • Min Luo
  • Qinghua Weng
  • Li Chen
  • Jinghua Chen
  • Chunyan Li
  • Ying Zhou
  • Long Wang
Research Paper

Abstract

A highly sensitive and selective photoelectrochemical (PEC) aptasensor was constructed for carcinoembryonic antigen (CEA) detection based on ZnO flower-rods (ZnO FRs) modified with g-C3N4-Au nanoparticle (AuNP) nanohybrids. The nanohybrids of g-C3N4-AuNPs can improve the visible light absorbance of ZnO FRs and enhance the PEC property. We designed a sandwichlike structure formed with DNA hybridization of NH2-probe1, CEA aptamer, and CuS-NH2-probe2 to detect CEA. The p-type semiconductor CuS nanocrystals (NCs) at the terminational part of sandwichlike structure work as electron traps to capture photogenerated electrons and consequently lead to a magnified photocurrent change. The results indicate that the photocurrent is increased when CEA antigen (Ag) is introduced. Since the sandwichlike structure is destroyed, CuS NCs are restricted to capture photogenerated electron. The PEC aptasensor for CEA determination is ranged from 0.01 ng·mL−1 to 2.5 ng·mL−1 with a detection of 1.9 pg·mL−1. The proposed aptasensor exhibits satisfactory PEC performances with rapid detection, great sensitivity and specificity. Specially, this PEC aptasensor shows a reliable result for the determination of CEA in invalid human serum compared with the ELISA method. The designed aptasensor may provide a new idea for a versatile PEC platform to determine various molecules.

Graphical abstract

Keywords

Photoelectrochemical aptasensor ZnO flower-rods g-C3N4-Au nanoparticles CuS Carcinoembryonic antigen 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (51602053), Joint Funds for the Innovation of Science and Technology, Fujian Province (2017Y9122), Fujian Natural Science Foundation (2015J05020), Youth Scientific Research Program of Fujian Provincial Health and Family Planning Commission (2014-1-39), Nursery Scientific Research Foundation of Fujian Medical University (2014MP008), Professor Foundation of Fujian Medical University (JS14009). The authors thank Doctor W. Chen from Fujian Provincial Hospital for the support of invalid human serum and the data of ELISA method.

Compliance with ethical standards

The study was approved by the Ethical Committee of Fujian Medical University. Human fluid samples used in this study do not have any identifying information about all the participants that provided written informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1256_MOESM1_ESM.pdf (428 kb)
ESM 1 (PDF 428 kb)

References

  1. 1.
    Zhai QF, Zhang XW, Xia Y, Li J, Wang E. Electrochromic sensing platform based on steric hindrance effects for CEA detection. Analyst. 2016;141:3985–8.CrossRefGoogle Scholar
  2. 2.
    Miao H, Wang L, Zhuo Y, Zhou ZN, Yang XM. Label-free fluorimetric detection of CEA using carbon dots derive from tomato juice. Biosens Bioelectron. 2016;86:83–9.CrossRefGoogle Scholar
  3. 3.
    Ge SG, Li WP, Yan M, Song XR, Yu JH. Photoelectrochemical detection of tumor markers based on a CdS quantum dot/ZnO nanorod/Au@Pt-paper electrode 3D origami immunodevice. J Mater Chem B. 2015;3:2426–32.CrossRefGoogle Scholar
  4. 4.
    Li XJ, Yu SQ, Yan T, Zhang Y, Du B, Wu D, et al. A sensitive electrochemiluminescence immunosensor based on Ru(bpy)3 2+ in 3D CuNi oxalate as luminophores and graphene oxide-polyethylenimine as released Ru(bpy)3 2+ initiator. Biosens Bioelectron. 2017;89:1020–5.CrossRefGoogle Scholar
  5. 5.
    Liu FM, Zhang HL, Wu ZH, Dong HD, Zhou L, Yang DW, et al. Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen. Talanta. 2016;161:205–10.CrossRefGoogle Scholar
  6. 6.
    Yang WQ, Huang TT, Zhao MM, Luo F, Weng W, Wei QH, et al. High peroxidase-like activity of iron and nitrogen co-doped carbon dots and its application in immunosorbent assay. Talanta. 2017;164:1–6.CrossRefGoogle Scholar
  7. 7.
    Feng DX, Li LH, Han XW, Fang X, Li X, Zhang YZ. Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels. Sens Actuator B Chem. 2014;201:360–8.CrossRefGoogle Scholar
  8. 8.
    Lin H, Shi L, Sun DE, Li PW, Liu ZH. Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron. 2016;86:791–8.CrossRefGoogle Scholar
  9. 9.
    Lan JW, Huang IY, Lin YC, Chen JL, Heish CH. Development of an FPW biosensor with low insertion loss and high fabrication yield for detection of carcinoembryonic antigen. Sensors. 2016;16:1729–42.CrossRefGoogle Scholar
  10. 10.
    Ge L, Wang YH, Yang HM, Yang P, Cheng X, Yan M, et al. A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light. Anal Chim Acta. 2014;828:27–33.CrossRefGoogle Scholar
  11. 11.
    Qiu ZL, Shu J, Tang DP. Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core–shell NaYF4:Yb,Tm@ TiO2 upconversion microrods. Anal Chem. 2018;90:1021–8.CrossRefGoogle Scholar
  12. 12.
    Shu J, Tang DP. Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem Asian J. 2017;12:2780–9.CrossRefGoogle Scholar
  13. 13.
    Zeng XX, Bao JC, Han M, Tu WW, Dai ZH. Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. Biosens Bioelectron. 2014;54:331–8.CrossRefGoogle Scholar
  14. 14.
    Ge L, Wang WX, Hou T, Li F. A versatile immobilization-free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme-free cascaded quadratic amplification strategy. Biosens Bioelectron. 2016;77:220–6.CrossRefGoogle Scholar
  15. 15.
    Shu J, Qiu ZL, Lv SZ, Zhang KY, Tang DP. Plasmonic enhancement coupling with defect-engineered TiO2–x: a mode for sensitive photoelectrochemical biosensing. Anal Chem. 2018;90:2425–9.CrossRefGoogle Scholar
  16. 16.
    Zhang KY, Lv SZ, Lin ZZ, Li MJ, Tang DP. Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron. 2018;101:159–66.CrossRefGoogle Scholar
  17. 17.
    Wang XP, Xu R, Sun X, Wang YG, Ren X, Du Bin WD, et al. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron. 2017;96:239–45.CrossRefGoogle Scholar
  18. 18.
    Han QZ, Wang RY, Xing B, Chi HT, Wu D, Wei Q. Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6. Biosens Bioelectron. 2018;106:7–13.CrossRefGoogle Scholar
  19. 19.
    Han QZ, Wang RY, Xing B, Zhang T, Khan MS, Wu D, et al. Label-free photoelectrochemical immunoassay for CEA detection based on CdS sensitized WO3@BiOI heterostructure nanocomposite. Biosens Bioelectron. 2018;99:493–9.CrossRefGoogle Scholar
  20. 20.
    Zhang BT, Lu LL, Hu QC, Huang F, Lin Z. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron. 2014;56:243–9.CrossRefGoogle Scholar
  21. 21.
    Fang LX, Huang KJ, Zhang BL, Liu YJ, Zhang QY. A label-free electrochemistry biosensor based flower-like 3-dimensional ZnO superstructures for detection of DNA arrays. New J Chem. 2014;38:5918–24.CrossRefGoogle Scholar
  22. 22.
    Kang Z, Yan X, Wang Y, Bai Z, Liu Y. Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application. Sci Rep. 2015;5:7882–8.CrossRefGoogle Scholar
  23. 23.
    Schrier J, Demchenko D, Wang L, Alivisatos AP. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 2007;7:2377–82.CrossRefGoogle Scholar
  24. 24.
    Wang J, Su F, Zhang W. Preparation and enhanced visible light photoelectrochemical activity of g-C3N4/ZnO nanotube arrays. J Solid State Electrochem. 2014;18:2921–9.CrossRefGoogle Scholar
  25. 25.
    Wang H, Wang YG, Zhang Y, Wang Q, Xiang R, Wu D, et al. Photoelectrochemical immunosensor for dectection of carcinoembryonic antigen based on 2D TiO2 nanosheets and carboxylated graphitic carbon nitride. Sci Rep. 2016;6:27385.CrossRefGoogle Scholar
  26. 26.
    Jo W-K, Lee J, Selvam N. Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications. Chem Eng J. 2016;289:306–18.CrossRefGoogle Scholar
  27. 27.
    Xi X, Li J, Wang H, Zhao Q, Li H. Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim Acta. 2015;182:1273–9.CrossRefGoogle Scholar
  28. 28.
    Jo W-K, Selvam N. Enhanced visible light-driven photocatalytic performance of ZnO-g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. J Hazard Mater. 2015;299:462–70.CrossRefGoogle Scholar
  29. 29.
    Xu YS, Zhang WD. Ag/AgBr-drafted graphite-like carbon nitride with enhanced plasmonic photocatalytic activity under visible light. ChemCatChem. 2013;5:2343–51.CrossRefGoogle Scholar
  30. 30.
    Lv SZ, Li Y, Zhang KY, Lin ZZ, Tang DP. Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl Mater Interfaces. 2017;9:38336–43.CrossRefGoogle Scholar
  31. 31.
    Zhang KY, Lv SZ, Lin ZZ, Tang DP. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron. 2017;95:34–40.CrossRefGoogle Scholar
  32. 32.
    Cheng CM, Huang Y, Tian XQ, Zheng BZ, Li Y, Yuan HY, et al. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012;84:4754–9.CrossRefGoogle Scholar
  33. 33.
    Zhu YD, Peng J, Jiang LP, Zhu JJ. Fluorescent immunosensor based on CuS nanoparticles for sensitive detection of cancer biomarker. Analyst. 2014;139:649–55.CrossRefGoogle Scholar
  34. 34.
    Han ZZ, Liao L, Wu YT, Pan HB, Shen SF, Chen JZ. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. J Hazard Mater. 2012;217-218:100–6.CrossRefGoogle Scholar
  35. 35.
    Li S, Wang YH, Gao CM, Ge SG, Yu JH, Yan M. “Signal-off” photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. J Electroanal Chem. 2015;759:38–45.CrossRefGoogle Scholar
  36. 36.
    Han TQ, Li XJ, Li YY, Cao W, Wu D, Du B, et al. Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of nuclear matrix protein 22. Sensors Actuators B. 2014;205:176–83.CrossRefGoogle Scholar
  37. 37.
    Deng WP, Shen L, Wang X, Yang CL, Yu JH, Yan M, et al. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing. Biosens Bioelectron. 2016;82:132–9.CrossRefGoogle Scholar
  38. 38.
    Perumal V, Hashim U, Gopinath S, Haarindraprasad R, Poopalan P, Liu W, et al. A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosens Bioelectron. 2016;78:14–22.CrossRefGoogle Scholar
  39. 39.
    Wang JX, Lyu XJ, Wang LY, Yu S, Zhu WX, Han C, et al. Preparation and electrochemical performance of hierarchical CuS-rGo composite. J Alloys Compd. 2017;694:1067–72.CrossRefGoogle Scholar
  40. 40.
    Head J, Turner J. Analysis of the water-splitting capabilities of gallium indium phosphide nitride (GaInPN). Office Sci Tech Inf Tech Rep. 2007;7:1902–8.Google Scholar
  41. 41.
    Joshi UA, Maggard PA. CuNb3O8: a p-type semiconducting metal oxide photoelectrode. J Phys Chem Lett. 2012;3:1577–81.CrossRefGoogle Scholar
  42. 42.
    Pang XH, Pan JH, Gao PC, Wang YY, Wang LG, Du B, et al. A visible light induced photoelectrochemical aptsensor constructed by aligned ZnO@CdTe core shell nanocable arrays/carboxylated g-C3N4 for the detection of proprotein convertase subtilisin/kexin type 6 gene. Biosens Bioelectron. 2015;74:49–58.CrossRefGoogle Scholar
  43. 43.
    Wen XY, Zhang HW. Photoelectrochemical properties of CuSGeO2-TiO2 composite coating electrode. PLoS One. 2016;e0152862:11.Google Scholar
  44. 44.
    Chen X, Li HK, Wu YX, Wu HS, Wu LD, Tan PF, et al. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance. J Colloid Interf Sci. 2016;476:132–43.CrossRefGoogle Scholar
  45. 45.
    Pang XH, Wang L, Ma HM, Zhang Y, Pan JH, Chen Y, et al. Enhanced photoelectrochemical aptasensing platform for TXNDC5 gene based on exciton energy transfer between NCQDs and TiO2 nanorods. Sci Rep. 2016;6:19202.CrossRefGoogle Scholar
  46. 46.
    Ruland A, Schulz-Drost C, Sgobba V, Guldi DM. Enhancing photocurrent efficiencies by resonance energy transfer in CdTe quantum dot multilayers: towards rainbow solar cells. Adv Mater. 2011;23:4573–7.CrossRefGoogle Scholar
  47. 47.
    Wang WJ, Hao Q, Wang W, Bao L, Lei JP, Wang QB, et al. Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection. Nano. 2014;6:2710–7.Google Scholar
  48. 48.
    Eskelinen M, Kataja V, Hämäläinen E, Kosma VM, Penttilä AE. Serum tumour markers CEA, AFP, CA 15 - 3, TPS and Neu in diagnosis of breast cancer. Anticancer Res. 1997;17:1231–4.PubMedGoogle Scholar
  49. 49.
    Haroun M. Bovine serum albumin antibodies as a disease marker for hepatitis e virus infection. J Biomed Biotechnol. 2005;2005:316–21.CrossRefGoogle Scholar
  50. 50.
    Hernandez-Rodriguez NA, Correa E, Contreras-Paredes A, et al. The thrombin: a new useful factor in the early diagnosis of pulmonary metastasis? Rev Inst Nac Cancerol. 1997;43:65–75.Google Scholar
  51. 51.
    Lin ZY, Zhang GY, Yang WQ, Qiu B, Chen GN. CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles. Chem Commun. 2012;48:9918–20.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmacy, Fujian Medical UniversityFuzhouChina
  2. 2.School of Basic Medical SciencesFujian Medical UniversityFuzhouChina

Personalised recommendations