Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6469–6475 | Cite as

Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing

  • Surya P. Singh
  • Soumavo Mukherjee
  • Luis H. Galindo
  • Peter T. C. So
  • Ramachandra Rao Dasari
  • Uzma Zubair Khan
  • Raghuraman Kannan
  • Anandhi Upendran
  • Jeon Woong Kang
Research Paper


Optical monitoring of blood glucose levels for non-invasive diagnosis is a growing area of research. Recent efforts in this direction have been inclined towards reducing the requirement of calibration framework. Here, we are presenting a systematic investigation on the influence of variation in the ratio of calibration and validation points on the prospective predictive accuracy of spectral models. A fiber-optic probe coupled Raman system has been employed for transcutaneous measurements. Limit of agreement analysis between serum and partial least square regression predicted spectroscopic glucose values has been performed for accurate comparison. Findings are suggestive of strong predictive accuracy of spectroscopic models without requiring substantive calibration measurements.

Graphical abstract


Diabetes Raman spectroscopy Glucose sensing Partial least squares regression 



This work is supported by NIH P41-EB015871-30 and Samsung Advanced Institute of Technology (Seoul, South Korea). PTCS acknowledge support from U01-NS090438-03, R21-NS091982-01, R01-HL121386-03, the Singapore-MIT Alliance 2 (Cambridge, MA, USA), the Biosym IRG of Singapore-MIT Alliance Research and Technology Center (Cambridge, MA, USA), and Hamamatsu Corporation (Hamamatsu City, Japan). AU thanks Professor Elizabeth J. Parks (Department of Nutrition and Exercise Physiology, and Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri-Columbia) for providing the YSI analyzer and Nhan T Le (Department of Nutrition and Exercise Physiology) for helping us with calibration and use of the instrument. Intramural Funding for this work was provided by Office of Medical Research, School of Medicine, University of Missouri-Columbia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    American Diabetes A. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033–46.CrossRefGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefGoogle Scholar
  3. 3.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    American Diabetes A. Standards of medical care in diabetes—2009. Diabetes Care. 2009;32(Suppl 1):S13–61.CrossRefGoogle Scholar
  6. 6.
    Olansky L, Kennedy L. Finger-stick glucose monitoring: issues of accuracy and specificity. Diabetes Care. 2010;33(4):948–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem. 1999;45(2):165–77.PubMedGoogle Scholar
  8. 8.
    Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors 2017; 17(8).CrossRefGoogle Scholar
  9. 9.
    Chen C, Zhao XL, Li ZH, Zhu ZG, Qian SH, Flewitt AJ. Current and emerging technology for continuous glucose monitoring. Sensors 2017 ;17(1).CrossRefGoogle Scholar
  10. 10.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose sensors. Biosens Bioelectron. 2005;20(12):2555–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang HC, Lee AR. Recent developments in blood glucose sensors. J Food Drug Anal. 2015;23(2):191–200.CrossRefPubMedGoogle Scholar
  13. 13.
    Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol Ther. 2004;6(5):660–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Kong CR, Barman I, Dingari NC, Kang JW, Galindo L, Dasari RR, et al. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement. AIP Adv. 2011;1(3):32175.CrossRefPubMedGoogle Scholar
  15. 15.
    Berger AJ, Koo TW, Itzkan I, Feld MS. An enhanced algorithm for linear multivariate calibration. Anal Chem. 1998;70(3):623–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Berger AJ, Koo TW, Itzkan I, Horowitz G, Feld MS. Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl Opt. 1999;38(13):2916–26.CrossRefPubMedGoogle Scholar
  17. 17.
    Enejder AM, Scecina TG, Oh J, Hunter M, Shih WC, Sasic S, et al. Raman spectroscopy for noninvasive glucose measurements. J Biomed Opt. 2005;10(3):031114.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45(2):R1–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Koo TW, Berger AJ, Itzkan I, Horowitz G, Feld MS. Reagentless blood analysis by near-infrared Raman spectroscopy. Diabetes Technol Ther. 1999;1(2):153–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Shih WC, Bechtel KL, Rebec MV. Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt. 2015;20(5):051036.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, et al. Noninvasive monitoring of blood glucose with Raman spectroscopy. Acc Chem Res. 2017;50(2):264–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shao J, Lin M, Li Y, Li X, Liu J, Liang J, et al. In vivo blood glucose quantification using Raman spectroscopy. PLoS One. 2012;7(10):e48127.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Scholtes-Timmerman MJ, Bijlsma S, Fokkert MJ, Slingerland R, van Veen SJ. Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring. J Diabetes Sci Technol. 2014;8(5):974–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lundsgaard-Nielsen SM, Pors A, Banke SO, Henriksen JE, Hepp DK, Weber A. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS One. 2018;13(5):e0197134.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lipson J, Bernhardt J, Block U, Freeman WR, Hofmeister R, Hristakeva M, et al. Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy. J Diabetes Sci Technol. 2009;3(2):233–41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Spegazzini N, Barman I, Dingari NC, Pandey R, Soares JS, Ozaki Y, et al. Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information. Sci Rep. 2014;4:7013.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qi D, Berger AJ. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Appl Opt. 2007;46(10):1726–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Lui H, Zhao J, McLean D, Zeng H. Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res. 2012;72(10):2491–500.CrossRefPubMedGoogle Scholar
  29. 29.
    Clarke WL, Cox D, Gonderfrederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood-glucose. Diabetes Care. 1987;10(5):622–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Stockl D, Dewitte K, Fierens C, Thienpont LM. Evaluating clinical accuracy of systems for self-monitoring of blood glucose by error grid analysis—comment on constructing the “upper A-line”. Diabetes Care. 2000;23(11):1711–2.CrossRefPubMedGoogle Scholar
  31. 31.
    Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141–51.CrossRefGoogle Scholar
  32. 32.
    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Galvao RK, Araujo MC, Jose GE, Pontes MJ, Silva EC, Saldanha TC. A method for calibration and validation subset partitioning. Talanta. 2005;67(4):736–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Daszykowski M, Walczak B, Massart DL. Representative subset selection. Anal Chim Acta. 2002;468(1):91–103.CrossRefGoogle Scholar
  35. 35.
    Freckmann G, Schmid C, Baumstark A, Rutschmann M, Haug C, Heinemann L. Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: relevant differences among ISO 15197:2003, ISO 15197:2013, and current FDA recommendations. J Diabetes Sci Technol. 2015;9(4):885–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Surya P. Singh
    • 1
  • Soumavo Mukherjee
    • 2
  • Luis H. Galindo
    • 1
  • Peter T. C. So
    • 1
  • Ramachandra Rao Dasari
    • 1
  • Uzma Zubair Khan
    • 3
  • Raghuraman Kannan
    • 4
  • Anandhi Upendran
    • 5
    • 6
  • Jeon Woong Kang
    • 1
  1. 1.Laser Biomedical Research Center, G. R. Harrison Spectroscopy LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Biological Engineering, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Department of Endocrinology, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  4. 4.Department of Radiology, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  5. 5.MU-institute of Clinical and Translational Sciences (MU-iCATS), School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA
  6. 6.Department of Pharmacology and Physiology, School of MedicineUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations