Analytical and Bioanalytical Chemistry

, Volume 410, Issue 9, pp 2363–2375 | Cite as

An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection

  • Eda Yuhana Ariffin
  • Yook Heng Lee
  • Dedi Futra
  • Ling Ling Tan
  • Nurul Huda Abd Karim
  • Nik Nuraznida Nik Ibrahim
  • Asmat Ahmad
Research Paper

Abstract

A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer–Emmett–Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12–1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay.

Graphical abstract

Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres

Keywords

Electrochemical DNA biosensor E. coli DNA detection Hollow silica spheres Immobilization Hybridization 

Notes

Acknowledgements

We acknowledge the National University of Malaysia for providing grants GP-5179 and DPP-2016-064 and the Ministry of Science, Technology and Innovative Nanotechnology Directorate for grant NND/ND/(2)/TD11-009.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Jiang X, Wang R, Wang Y, Su X, Ying Y, Wang J, et al. Evaluation of different micro/nanobeads as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157:H7. Biosens. Bioelectron. 2008;29:23–8.CrossRefGoogle Scholar
  2. 2.
    Paniel N, Baudart J. Colorimetric and electrochemical genosensors for the detection of Escherichia coli DNA without amplification in seawater. Talanta. 2013;115:133–42.CrossRefGoogle Scholar
  3. 3.
    Ercole C, Cachio P, Botta CL, Centi V, Lepidi A. Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharide. Microsc Microanal. 2007;13:42–50.CrossRefGoogle Scholar
  4. 4.
    Sharma VK, Dean-Nystrom EA, Casey TA. Semi-automated flurogenic PCR assays (TaqMan) for rapid detection of Escherichia coli O157:H7 and other Shiga toxigenic E. coli. Mol Cell Probe. 1999;13:291–302.CrossRefGoogle Scholar
  5. 5.
    Zelada-Guillen GA, Riu J, Duzgun A, Rios FX. Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed. 2009;48:7334–7.CrossRefGoogle Scholar
  6. 6.
    Zhang GJ, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim EA, et al. Silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus. Sens Actuators B. 2010;146:138–44.CrossRefGoogle Scholar
  7. 7.
    Lam SK, Devine PL. Evaluation of capture ELISA and rapid immunochromatographic test for the determination of Ig M dan Ig G antibodies produced during dengue infection. Clin Diagn Virol. 1998;(10):75–81.Google Scholar
  8. 8.
    Subramanian A, Irudayaraj J, Ryan T. A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosens Bioelectron. 2006;21:998–1006.CrossRefGoogle Scholar
  9. 9.
    Li J, Tan W, Wang K, Xiao D, Yang X, He X, et al. Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure. Anal. Sci. 2001;17:1149–53.CrossRefGoogle Scholar
  10. 10.
    Zhu D, Liu J, Tang Y, Xing D. A reusable DNA biosensor for the detection of genetically modified organism using magnetic bead-based electrochemiluminescence. Sens Actuators B. 2010;149:221–5.CrossRefGoogle Scholar
  11. 11.
    Guo SH, Lin J, Penchev M, Yengel E, Ghazinejad M, Ozkan CS, et al. Label free DNA detection using large area graphene based field effect transistor biosensors. J Nanosci Nanotechnol. 2011;11:5258–63.CrossRefGoogle Scholar
  12. 12.
    Karamollaoglu I, Oktem HV, Mutlu M. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochem Eng J. 2009;44:142–50.CrossRefGoogle Scholar
  13. 13.
    Wang J. Electrochemical nucleic acid biosensors. Anal Chim Acta. 2002;469:63–71.CrossRefGoogle Scholar
  14. 14.
    Wang L, Liu Q, Hu Z, Zhang Y, Wu C, Yang M, et al. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection. Talanta. 2009;78:647–52.CrossRefGoogle Scholar
  15. 15.
    Li C, Chen X, Wang N, Zhang B. An ultrasensitive and label-free electrochemical DNA biosensor for detection of DNase I activity. RSC Adv. 2017;7:21666–70.CrossRefGoogle Scholar
  16. 16.
    Evtugyn GA, Stepanova VB, Porfireva AV, Zamaleeva AI, Fakhrullin RR. Electrochemical DNA sensors based on nanostructured organic dyes/DNA/polyelectrolyte complexes. J Nanosci Nanotechnol. 2014;14(9):6738–47.CrossRefGoogle Scholar
  17. 17.
    Teles FRR, Foncessca LP. Trends in DNA biosensors. Talanta. 2008;77:606–23.CrossRefGoogle Scholar
  18. 18.
    Ulianas A, Lee YH, Ahmad M, Lau HY, Ishak Z, Tan LL. A regenerable screen-printed DNA biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination. Sens Actuators B. 2014;190:694–701.CrossRefGoogle Scholar
  19. 19.
    Liebana S, Brandao D, Cortes P, Campoy S, Alegret S, Pividori MI. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles. Anal Chim Acta. 2016;904:1–9.CrossRefGoogle Scholar
  20. 20.
    Cai L, Chen ZZ, Dong XM, Tang HW, Pang DW. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter. Biosens Bioelectron. 2011;29:46–52.CrossRefGoogle Scholar
  21. 21.
    B.H. Cha, S.M. Lee, J.C. Park, K.S. Hwang, S.K. Kim, J.J. Hong. Detection of hepatitis B virus (HBV) DNA at femtomolar concentrations using silica nanoparticle-enhanced microcantilever sensor. Biosens Bioelectron. 2009:25:130-5.Google Scholar
  22. 22.
    Xiao QG, Tao X, Zou HK, Chen JF. Comparative study of solid silica nanoparticles and hollow silica nanoparticles for the immobilization of lysozyme. Chem Eng J. 2008;137:38–44.CrossRefGoogle Scholar
  23. 23.
    Li Y, Shi J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater. 2014;26:3176–205.CrossRefGoogle Scholar
  24. 24.
    J.F. Chen, H.M. Ding, J.X. Wang, L. Sao. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials. 2004:25:723-7.Google Scholar
  25. 25.
    Morey MS, O’Brien S, Schwarz S, Stucky GD. Hydrothermal and postsynthesis surface modification of cubic, MCM-48 and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater. 2000;12(4):898–911.CrossRefGoogle Scholar
  26. 26.
    Okada K, Shimai A, Takei T, Hayashi S, Yasumori A, Mackenzie KJD. Preparation of microporous silica from metakaolinite by selective leaching method. Microporous Mesoporous Mater. 1998;21:289–96.CrossRefGoogle Scholar
  27. 27.
    Lee B, Kim Y, Lee H, Yi J. Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. Microporous Mesoporous Mater. 2001;50:77–90.CrossRefGoogle Scholar
  28. 28.
    He F, Zhuo RX, Liu LJ, Jin DB, Feng J, Wang XL. Immobilized lipase on porous silica beads: preparation and application for enzymatic ring-opening polymerization of cyclic phosphate. React Funct Polym. 2001;47(2):153–8.CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Dai S, Fan X, Blom DA, Pennycook SJ, Wei Y. Controlled synthesis of CdS nanoparticles inside ordered mesoporous silica using ion-exchange reaction. J Phys Chem B. 2001;105(29):6755–8.CrossRefGoogle Scholar
  30. 30.
    Jain A, Rogojevic S, Ponoth S, Agarwal N, Matthew I, Gill WN, et al. Porous silica materials as low-k dielectrics for electronic and optical interconnects. Thin Solid Films. 2001;398-399:513–22.CrossRefGoogle Scholar
  31. 31.
    R.K. Sharma, S. Das, A. Maitra, Enzymes in the cavity of hollow silica nanoparticles. J Colloid Interface Sci. 2005:284:358-61.Google Scholar
  32. 32.
    Bai Y, Yang H, Yang W, Li Y, Sun C. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens Actuators B. 2007;124:179–86.CrossRefGoogle Scholar
  33. 33.
    Chen Y, Chu C, Zhou Y, Ru Y, Chen H, Chen F, et al. Reversible pore-structure evolution in hollow silica nanocapsules: large pores for siRNA delivery and nanoparticle collecting. Small. 2011;20:2935–44.CrossRefGoogle Scholar
  34. 34.
    Li X, He G, Han Y, Xue Q, Wu X, Yang S. Magnetic titania-silica composite-Polypyrrole core-shell spheres and their sensitivity toward hydrogen peroxide as electrochemical sensor. J Colloid Interface Sci. 2012;387:39–46.CrossRefGoogle Scholar
  35. 35.
    Ariffin EY, Lee YH, Futra D, Tan LL. Aminated hollow silica spheres for electrochemical DNA biosensor. AIP Conf Proc. 2015;1678:050008.CrossRefGoogle Scholar
  36. 36.
    Solanki PR, Kaushik A, Chavhan PM, Maheshwari SN, Malhotra BD. Nanostructured zirconium oxide based genosensor for Escherichia coli detection. Electrochem Commun. 2009;11:2272–7.CrossRefGoogle Scholar
  37. 37.
    Boissiere C, Lee AVD, Mansouri AE, Larbot A, Prouzet E. A double step synthesis of mesoporous micrometric spherical MSU-X silica particles. Chem Commun. 1999, 20:2047–8.Google Scholar
  38. 38.
    Zhang L, Foxman B, Gilsdorf JR, Marrs CF. Bacterial genomic DNA isolation using sonication for microarray analysis. Benchmarks. 2005;39(5):640–1.Google Scholar
  39. 39.
    Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(2):117–22.Google Scholar
  40. 40.
    De Lange MF, Vlugt TJH, Gascon J, Kapteijn F. Adsorptive characterization of porous solids: Error analysis guides the way. Microporous Mesoporous Mater. 2014;200:199–215.CrossRefGoogle Scholar
  41. 41.
    Zielinski JM, Kettle L. Physical characterization: surface area and porosity. London: Intertek; 2013.Google Scholar
  42. 42.
    Nguyen A-T, Park CW, Kim SH. Synthesis of hollow silica by Stöber method with double polymers as templates. Bull Korean Chem Soc. 2014;35(1):173–6.CrossRefGoogle Scholar
  43. 43.
    Alqasaimeh M, Lee YH, Ahmad M, Raj ASS, Tan LL. A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors. 2014;14:13186–209.CrossRefGoogle Scholar
  44. 44.
    Mourhly A, Khachanil M, Hamidi AE, Kacimi M, Halim M, Arsalane S. The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomater Nanotechnol. 2015;5(35):1–7.Google Scholar
  45. 45.
    Nakanishi K, Tomita M, Kato K. Synthesis of amino-functionalized mesoporous silica sheets and their application for metal ion capture. J Asian Ceram Soc. 2015;2015(3):70–6.CrossRefGoogle Scholar
  46. 46.
    Sayen S, Walcariu A. Electro-assisted generation of functionalized silica films on gold. Electrochem Commun. 2003;5:341–8.CrossRefGoogle Scholar
  47. 47.
    Monk PMS. Fundamentals of electro-analytical chemistry. New York: Wiley; 2001.Google Scholar
  48. 48.
    López-Paz JL, González-Martínez MA, Escorihuela J, Banuls MJ, Puchades R, Maquieira A. Direct and label-free monitoring oligonucleotide immobilization, non-specific binding and DNA biorecognition. Sens Actuators, B. 2014;192:221–8.CrossRefGoogle Scholar
  49. 49.
    Ulianas A, Lee YH, Sharina AH, Tan LL. An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres. Sensor. 2012;12:5445–60.CrossRefGoogle Scholar
  50. 50.
    Kerman K, Morita Y, Takamar Y, Ozsos M, Tamiya E. Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization. Anal Chim Acta. 2004;510:169–74.CrossRefGoogle Scholar
  51. 51.
    Hames BD, Higgins SJ. Nucleic acid hybridisation-a practical approach. New York: Oxford University Press; 1985. p. 78.Google Scholar
  52. 52.
    Okahata Y, Kawase M, Niikura K, Ohkate F, Furusawa H, Ebara Y. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal Chem. 1998;70:1288–96.CrossRefGoogle Scholar
  53. 53.
    Gooding JJ. Electrochemical DNA hybridization biosensors. Electroanalysis. 2002;14(17):1149–56.CrossRefGoogle Scholar
  54. 54.
    Luracelli F, Marrazza G, Turner APF, Mancini M. Carbon and gold electrodes as electrochemical transducers for DNA hybridization sensors. Biosens Bioelectron. 2004;19:515–30.CrossRefGoogle Scholar
  55. 55.
    Tiwari I, Singh M, Pandey CM, Susana G. Electrochemical detection of a pathogenic Escherichia coli specific DNA sequence based on a graphene oxide-chitosan composite decorated with nickel ferrite nanoparticles. RSC Adv. 2015;5:67115–24.CrossRefGoogle Scholar
  56. 56.
    Li K, Lai Y, Zhang W, Jin L. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta. 2011;84:607–13.CrossRefGoogle Scholar
  57. 57.
    Marugan JR, Dominguez MDP, Casero E, Vazquez L, Garcia T, Alfambra AMP, et al. Sol-gel derived gold nanoparticles biosensing platform for Escherichia coli detection. Sens Actuators B. 2013;182:307–14.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eda Yuhana Ariffin
    • 1
  • Yook Heng Lee
    • 1
    • 2
  • Dedi Futra
    • 3
  • Ling Ling Tan
    • 2
  • Nurul Huda Abd Karim
    • 1
  • Nik Nuraznida Nik Ibrahim
    • 4
  • Asmat Ahmad
    • 4
  1. 1.School of Chemical Sciences and Food Technology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Southeast Asia Disaster Prevention Research Initiative, Institute for Environment and DevelopmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Chemistry Education, Faculty of EducationUniversitas RiauPekan BaruIndonesia
  4. 4.School of Biosciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations