Skip to main content
Log in

Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is a recognized foodborne pathogen that causes listeriosis in susceptible consumers. Currently, the detection systems for Listeria in food detect live and dead bacteria, being the viable microorganisms most relevant for their ability to cause sickness in the population at risk. For this reason, a new nanohybrid compound was developed for the optical detection of Listeria that was based on polyamidoamine dendrimers functionalized with an auxotrophic cofactor (lipoic acid), together with the coupling of fluorescent semiconductor crystals (quantum dots). The nanohybrid sensor has a detection limit for viable L. monocytogenes of 5.19 × 103 colony-forming units per milliliter under epifluorescence microscopy. It was specific when used among other pathogens commonly found in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Välima A, Tilsala-Timisjärvi A, Virtanen E. Rapid detection and identification methods for Listeria monocytogenes in the food chain – a review. Food Control. 2015;55:103–14. doi:10.1016/j.foodcont.2015.02.037.

    Article  Google Scholar 

  2. Walker SJ, Archer P, Banks JG. Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol. 1990;68(2):157–62.

    Article  CAS  Google Scholar 

  3. Sauders BD, Overdevest J, Fortes E, Windham K, Schukken Y, Lembo A, et al. Diversity of Listeria species in urban and natural environments. Appl Environ Microbiol. 2012;78(12):4420–33. doi:10.1128/aem.00282-12.

    Article  CAS  Google Scholar 

  4. Silk BJ, Date KA, Jackson KA, Pouillot R, Holt KG, Graves LM, et al. Invasive listeriosis in the Foodborne Diseases Active Surveillance Network (FoodNet), 2004-2009: further targeted prevention needed for higher-risk groups. Clin Infect Dis. 2012;54 Suppl 5:S396–404. doi:10.1093/cid/cis268.

    Article  Google Scholar 

  5. Schlech 3rd WF, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, et al. Epidemic listeriosis—evidence for transmission by food. N Engl J Med. 1983;308(4):203–6. doi:10.1056/nejm198301273080407.

    Article  Google Scholar 

  6. Crowe SJ, Mahon BE, Vieira AR, Gould LH. Vital signs: multistate foodborne outbreaks - United States, 2010-2014. MMWR Morb Mortal Wkly Rep. 2015;64(43):1221–5. doi:10.15585/mmwr.mm6443a4.

    Article  Google Scholar 

  7. Dwivedi HP, Jaykus LA. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol. 2011;37(1):40–63. doi:10.3109/1040841x.2010.506430.

    Article  CAS  Google Scholar 

  8. Hitchins A, Jinneman K. Laboratory methods - BAM: detection and enumeration of Listeria monocytogenes. US Food and Drug Administration, Silver Spring. http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm071400.htm (2016). Accessed 4 Apr 16.

  9. Soejima T, Iida K, Qin T, Taniai H, Seki M, Yoshida S. Method to detect only live bacteria during PCR amplification. J Clin Microbiol. 2008;46(7):2305–13. doi:10.1128/jcm.02171-07.

    Article  CAS  Google Scholar 

  10. Koyun A, Ahlatcıoğlu E, İpek YK. Biosensors and their principles. In: Kara S, editor. A roadmap of biomedical engineers and milestones. Rijeka: In Tech; 2012. 10.5772/48824

  11. Chekina C, Horák D, Jendelová P, Trchová M, Beneš M, Hrubý M, et al. Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem. 2011;21:7630–9. doi:10.1039/C1JM10621J.

    Article  CAS  Google Scholar 

  12. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76. doi:10.1038/nbt994.

    Article  CAS  Google Scholar 

  13. Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008;1(2):99–115. doi:10.1007/s12274-008-8018-3.

    Article  CAS  Google Scholar 

  14. Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–46. doi:10.1128/cmr.00120-13.

    Article  CAS  Google Scholar 

  15. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi:10.1186/1556-276x-9-247.

    Article  Google Scholar 

  16. Chang AC, Gillespie JB, Tabacco MB. Enhanced detection of live bacteria using a dendrimer thin film in an optical biosensor. Anal Chem. 2001;73(3):467–70.

    Article  CAS  Google Scholar 

  17. Ji J, Schanzle J, Tabacco M. Real-time detection of bacterial contamination in dynamic aqueous environments using optical sensors. Anal Chem. 2004;76(5):1411–8. doi:10.1021/ac034914q.

    Article  CAS  Google Scholar 

  18. Deisingh A, Thompson M. Biosensors for the detection of bacteria. Can J Microbiol. 2004;50(2):69–77.

    Article  CAS  Google Scholar 

  19. Sarkar A, Kaganove S, Dvornic P, Satoh P. Colorimetric biosensors based on polydiacetylene (PDA) and polyamidoamine (PAMAM) dendrimers. Polymer News. 2005;30(12):370–7.

    Article  CAS  Google Scholar 

  20. Petit A, Eullaffroyb P, Debenesta T, Gagnéa F. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol. 2010;100(2):187–93. doi:10.1016/j.aquatox.2010.01.019.

    Article  CAS  Google Scholar 

  21. Lopez A, Reins R, McDermott A, Trautner B, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009;5(10):1148–56. doi:10.1039/b904746h.

    Article  CAS  Google Scholar 

  22. Lu Y, Slomberg D, Shah A, Schoenfisch M. Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules. 2013;14(10):3589–98. doi:10.1021/bm400961r.

    Article  CAS  Google Scholar 

  23. Zhao J, Jensen L, Sung J, Zou S, Schatz G, Van Duyne R. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. Am Chem Soc. 2007;129(24):7647–56.

    Article  CAS  Google Scholar 

  24. Ren H, Kulkarni D, Kodiyath R, Xu W, Choi I, Tsukruk V. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. Appl Mater Interfaces. 2014;6(4):2459–70. doi:10.1021/am404881p.

    Article  CAS  Google Scholar 

  25. Jin S, Xu Z, Chen J, Liang X, Wu J, Qian X. Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. Anal Chim Acta. 2004;523(1):117–23. doi:10.1016/j.aca.2004.05.030.

    Article  CAS  Google Scholar 

  26. Rosenthal S, Chang J, Kovtun O, McBride J, Tomlinson I. Biocompatible quantum dots for biological applications. Chem Biol. 2011;18(1):10–24. doi:10.1016/j.chembiol.2010.11.013.

    Article  CAS  Google Scholar 

  27. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–75. doi:10.1038/nmeth.1248.

    Article  CAS  Google Scholar 

  28. Geraldo DA, Duran-Lara EF, Aguayo D, Cachau RE, Tapia J, Esparza R, et al. Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells. Anal Bioanal Chem. 2011;400(2):483–92. doi:10.1007/s00216-011-4756-2.

    Article  CAS  Google Scholar 

  29. Miao T, Wang Z, Li S, Wang X. Sensitive fluorescent detection of Staphylococcus aureususing nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta. 2011;172(3):431–7. doi:10.1007/s00604-010-0505-z.

    Article  CAS  Google Scholar 

  30. Gaan S, He G, Feenstra R, Walker J, Towe E. Size, shape, composition, and electronic properties of InAs/GaAs quantum dots by scanning tunneling microscopy and spectroscopy. J Appl Phys. 2010;108(11):1–13. doi:10.1063/1.3518680.

    Article  Google Scholar 

  31. Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel). 2009;9(6):4407–45. doi:10.3390/s90604407.

    Article  CAS  Google Scholar 

  32. Halford C, Gau V, Churchill BM, Haake DA. Bacterial detection & identification using electrochemical sensors. J Vis Exp. 2013;74:1–8. doi:10.3791/4282.

    Google Scholar 

  33. Tsai H, Hodgson D. Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol. 2003;69(11):6943–5. doi:10.1128/aem.69.11.6943-6945.2003.

    Article  CAS  Google Scholar 

  34. Spalding MD, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010;74(2):200–28.

    Article  CAS  Google Scholar 

  35. Christensen QH, Hagar JA, O'Riordan MX, Cronan JE. A complex lipoate utilization pathway in Listeria monocytogenes. J Biol Chem. 2011;286(36):31447–56. doi:10.1074/jbc.M111.273607.

    Article  CAS  Google Scholar 

  36. Keeney KM, Stuckey JA, O'Riordan MX. LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence. Mol Microbiol. 2007;66(3):758–70. doi:10.1111/j.1365-2958.2007.05956.x.

    Article  CAS  Google Scholar 

  37. Wang H, Li Y, Slavic M. Rapid Detection of Listeria monocytogens using quantum dots and nanobeads-based optical biosensor. J Rapid Methods Autom Microbiol. 2007;15(1):67–76. doi:10.1111/j.1745-4581.2007.00075.x.

    Article  Google Scholar 

  38. Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, et al. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta. 2012;85:145–51. doi:10.1016/j.electacta.2012.07.133.

    Article  CAS  Google Scholar 

  39. Davis D, Guo X, Musavi L, Lin C-S, Chen S-H, Wu V. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Ind Biotechnol. 2013;9(1):31–6. doi:10.1089/ind.2012.0033.

    Article  CAS  Google Scholar 

  40. Li L, Qian H, Fang N, Ren J. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin. 2006;116(1–2):59–66. doi:10.1016/j.jlumin.2005.03.001.

    Article  CAS  Google Scholar 

  41. An LM, Yang YQ, Su WH, Yi J, Liu CX, Chao KF, et al. Enhanced fluorescence from CdTe quantum dots self-assembled on the surface of silver nanoparticles. J Nanosci Nanotechnol. 2010;10(3):2099–103.

    Article  CAS  Google Scholar 

  42. Klayman D, Griffin T. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J Am Chem Soc. 1973;95(1):197–99. doi:10.1021/ja00782a034.

    Article  CAS  Google Scholar 

  43. Park S, Chibli H, Nadeau J. Solubilization and bio-conjugation of quantum dots and bacterial toxicity assays by growth curve and plate count. J Vis Exp. 2012;65, e3969. doi:10.3791/3969.

    Google Scholar 

  44. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A. 2004;101(42):15027–32. doi:10.1073/pnas.0404806101.

    Article  CAS  Google Scholar 

  45. Mesa M, Macías M, Cantero D, Barja F. Use of the direct epifluorescent filter technique for the enumeration of viable and total acetic acid bacteria from vinegar fermentation. J Fluoresc. 2003;13(3):261–5. doi:10.1023/A:1025094017265.

    Article  CAS  Google Scholar 

  46. Maturin L, Peeler J. Laboratory methods - BAM: aerobic plate count. US Food and Drug Administration, Silver Spring. http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm063346.htm (2001). Accessed 4 Apr 16.

  47. Vogelgesang J, Hädrich J. Limits of detection, identification and determination: a statistical approach for practitioners. Accred Qual Assur. 1998;3(6):242–55. doi:10.1007/s007690050234.

    Article  CAS  Google Scholar 

  48. Wang C, Yan Q, Liu H-B, Zhou X-H, Xiao S-J. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir. 2011;27(19):12058–68. doi:10.1021/la202267p.

    Article  CAS  Google Scholar 

  49. Sun L, Yu X, Sun M, Wang H, Xu S, Dixon JD, et al. Preparation of quantum dots encoded microspheres by electrospray for the detection of biomolecules. J Colloid Interface Sci. 2011;358(1):73–80. doi:10.1016/j.jcis.2011.02.047.

    Article  CAS  Google Scholar 

  50. Guterres S, Beck R, Pohlmann A. Spray-drying technique to prepare innovative nanoparticulated formulations for drug administration: a brief overview. Braz J Phys. 2009;39(1A):205–9. doi:10.1590/S0103-97332009000200013.

    Article  CAS  Google Scholar 

  51. Zhou Z, Lin M, Chen Z, Sun H, Zhang H, Sun H, et al. Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater. 2011;23(21):4857–62. doi:10.1021/cm202368w.

    Article  CAS  Google Scholar 

  52. Forry SP, Madonna MC, López-Pérez D, Lin NJ, Pasco MD. Automation of antimicrobial activity screening. AMB Express. 2016;6:1–10. doi:10.1186/s13568-016-0191-2.

    Article  CAS  Google Scholar 

  53. Wagner M, McLauchlin J. Biology. In: Liu D, editor. Handbook of Listeria monocytogenes. Boca Raton: CRC Press; 2008.

    Google Scholar 

  54. Heigl N, Bachmann S, Petter CH, Marchetti-Deschmann M, Allmaier G, Bonn GK, et al. Near-infrared spectroscopic study on guest-host interactions among G0-G7 amine-terminated poly(amidoamine) dendrimers and porous silica materials for simultaneously determining the molecular weight and particle diameter by multivariate calibration techniques. Anal Chem. 2009;81(14):5655–62. doi:10.1021/ac900375z.

    Article  CAS  Google Scholar 

  55. Tmejova K, Hynek D, Kopel P, Gumulec J, Krizkova S, Guran R, et al. Structural effects and nanoparticle size are essential for quantum dots-metallothionein complex formation. Colloids Surf B. 2015;134:262–72. doi:10.1016/j.colsurfb.2015.06.045.

    Article  CAS  Google Scholar 

  56. Dey D, Goswami T. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol. 2011;2011:348218. doi:10.1155/2011/348218.

    Article  CAS  Google Scholar 

  57. Pohlmann C, Humenik M, Sprinzl M. Detection of bacterial 16S rRNA using multivalent dendrimer-reporter enzyme conjugates. Biosens Bioelectron. 2009;24(11):3383–6. doi:10.1016/j.bios.2009.04.017.

    Article  Google Scholar 

  58. Mandal TK, Parvin N. Rapid detection of bacteria by carbon quantum dots. J Biomed Nanotechnol. 2011;7(6):846–8.

    Article  CAS  Google Scholar 

  59. Dumas EM, Ozenne V, Mielke RE, Nadeau JL. Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans Nanobioscience. 2009;8(1):58–64. doi:10.1109/tnb.2009.2017313.

    Article  Google Scholar 

  60. Gonzalo S, Rodea-Palomares I, Leganes F, Garcia-Calvo E, Rosal R, Fernandez-Pinas F. First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology. 2015;9(6):706–18. doi:10.3109/17435390.2014.969345.

    Article  CAS  Google Scholar 

  61. Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let's meet the challenge. Int J Pharm. 2010;394(1-2):122–42. doi:10.1016/j.ijpharm.2010.04.027.

    Article  CAS  Google Scholar 

  62. Kloepfer JA, Mielke RE, Nadeau JL. Uptake of CdSe and CdSe/ZnS Quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol. 2005;71(5):2548–57. doi:10.1128/aem.71.5.2548-2557.2005.

    Article  CAS  Google Scholar 

  63. Mahendra S, Zhu H, Colvin VL, Alvarez PJ. Quantum dot weathering results in microbial toxicity. Environ Sci Technol. 2008;42(24):9424–30.

    Article  CAS  Google Scholar 

  64. Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009;74(1):M46–52. doi:10.1111/j.1750-3841.2008.01013.x.

    Article  CAS  Google Scholar 

  65. Tyagi A, Rawat K, Verma A, Bohidar H. Mechanistic evaluation of the size dependent antimicrobial activity of water soluble QDs. Anal Methods. 2015;8(5):1060–8. doi:10.1039/C5AY02742J.

    Article  Google Scholar 

  66. Lin S, Bhattacharya P, Rajapakse N, Brune D, Ke PC. Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C. 2009;113(25):10962–6. doi:10.1021/jp904343s.

    Article  CAS  Google Scholar 

  67. Swift BJF, Baneyx F. Microbial uptake, toxicity, and fate of biofabricated ZnS:Mn nanocrystals. PLoS One. 2015;10(4):1–14. doi:10.1371/journal.pone.0124916.

    Article  Google Scholar 

  68. Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev. 2007;71(2):377–97. doi:10.1128/mmbr.00039-06.

    Article  CAS  Google Scholar 

  69. Hirschey MD, Han YJ, Stucky GD, Butler A. Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots. J Biol Inorg Chem. 2006;11(5):663–9. doi:10.1007/s00775-006-0116-7.

    Article  CAS  Google Scholar 

  70. Pettipher GL, Mansell R, McKinnon CH, Cousins CM. Rapid membrane filtration-epifluorescent microscopy technique for direct enumeration of bacteria in raw milk. Appl Environ Microbiol. 1980;39(2):423–9.

    CAS  Google Scholar 

  71. Tortorello ML, Stewart DS. Antibody-direct epifluorescent filter technique for rapid, direct enumeration of Escherichia coli O157:H7 in beef. Appl Environ Microbiol. 1994;60(10):3553–9.

    CAS  Google Scholar 

  72. Zemser R, Martin S. Heat stability of virulence-associated enzymes from Listeria monocytogenes SLCC 5764. J Food Prot. 1998;61(7):899–902.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

L.G. and L.S.S. thank FONDECYT (FONDECYT Initiation no. 11150390 and Regular no. 1140642). Additional financial support from PIEI (QUI-BIO) from Universidad de Talca is greatly acknowledged. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Santos.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Contributions

L.S.S. and W.D. conceived and designed the experiments; R.I.C., L.G., F.M.N., and Z.L.C. performed research and analyzed the data. All authors analyzed and interpreted data, drafted the paper, and read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donoso, W., Castro, R.I., Guzmán, L. et al. Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex. Anal Bioanal Chem 409, 5359–5371 (2017). https://doi.org/10.1007/s00216-017-0481-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0481-9

Keywords

Navigation