Skip to main content
Log in

Real-time monitoring of oxidative injury of vascular endothelial cells and protective effect of quercetin using quartz crystal microbalance

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The adhesion, spreading, and proliferation of human umbilical vein endothelial cell line (HUVEC-C) cells, on a gold electrode were monitored using quartz crystal microbalance (QCM) measurements. The viscodensity effect caused by the normal action of the cells led to a decrease of the resonant frequency and increase of the motional resistance. The oxidative injury of HUVEC-C cells appeared immediately with the addition of H2O2, exhibiting the decline of cellular spreading area and cell coverage on the electrode surface and resulting in inverted QCM responses. The injured extent of the cells was found to be related to the content of H2O2. It is found that 0.05 mM quercetin added beforehand in the growth medium could remove completely the oxidative action of 1.0 mM H2O2. Quercetin with increased dosage still exerted a partial protective effect on HUVEC-C cells against oxidative injury induced by 2.5 mM H2O2. The microscope observations, electrochemical measurements, and MTT analysis validate the QCM assay results, indicating that quercetin is a valuable flavonoid anti-oxidant in the precaution and treatment for the oxidative injury of vascular endothelium.

Upper part: Microscope images (×400) of 7.5×104 HUVEC-C cells adhered to the substrate at 48 h in the presence of H2O2. Middle part: Real-time Δf 0 and ΔR 1 responses to the addition of 7.5×104 HUVEC-C cells onto QCM gold electrode in the presence of H2O2 added at 24 h after the introduction of the cells. Lower part: Microscope images (×400) of 7.5×104 HUVEC-C cells adhered to the substrate at 48 h in the presence of quercetin added at 18 h and H2O2 added at 24 h after the introduction of the cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Keller TT, Mairuhu ATA, de Kruif MD, Klein SK, Gerdes VEA, ten Cate H. Infections and endothelial cells. Cardiovasc Res. 2003;60:40–8.

    Article  CAS  Google Scholar 

  2. Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196:430–43.

    Article  CAS  Google Scholar 

  3. Widlansky ME, Gokce N, Keaney Jr JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.

    Article  CAS  Google Scholar 

  4. Cooke JP. Flow, NO, and atherogenesis. Proc Natl Acad Sci U S A. 2003;100:768–70.

    Article  CAS  Google Scholar 

  5. May JM. How does ascorbic acid prevent endothelial dysfunction? Free Radic Biol Med. 2000;28:1421–9.

    Article  CAS  Google Scholar 

  6. Engler MM, Engler MB, Malloy MJ, Chiu EY, Schloetter MC, Paul SM, et al. Antioxidant vitamins C and E improve endothelial function in children with hyperlipidemia: endothelial assessment of risk from lipids in youth (EARLY) trial. Circulation. 2003;108:1059–63.

    Article  CAS  Google Scholar 

  7. Podhaisky HP, Abate A, Polte T, Oberle S, Schröder H. Aspirin protects endothelial cells from oxidative stress-possible synergism with vitamin E. FEBS Lett. 1997;417:349–51.

    Article  CAS  Google Scholar 

  8. Cesquini M, Torsoni MA, Stoppa GR, Ogo SH. t-BOOH-induced oxidative damage in sickle red blood cells and the role of flavonoids. Biomed Pharmacother. 2003;57:124–9.

    Article  CAS  Google Scholar 

  9. Hu Q, Yu J, Yang W, Kimatu BM, Fang Y, Ma N, et al. Identification of flavonoids from Flammulina velutipes and its neuroprotective effect on pheochromocytoma-12 cells. Food Chem. 2016;204:274–82.

    Article  CAS  Google Scholar 

  10. Gomes SMC, Ghica ME, Rodrigues IA, Gil Ede S, Oliveira-Brett AM. Flavonoids electrochemical detection in fruit extracts and total antioxidant capacity evaluation. Talanta. 2016;154:284–91.

    Article  CAS  Google Scholar 

  11. Duthie SJ, Collins AR, Duthie GG, Dobson VL. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat Res. 1997;393:223–31.

    Article  CAS  Google Scholar 

  12. Vitor RF, Mota-Filipe H, Teixeira G, Borges C, Rodrigues AI, Teixeira A, et al. Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury. J Ethnopharmacol. 2004;93:363–70.

    Article  CAS  Google Scholar 

  13. Shang Y, Qin B, Cheng J, Miao H. Prevention of oxidative injury by flavonoids from stems and leaves of Scutellaria Baicalensis Georgi in PC12 cells. Phytother Res. 2006;20:53–7.

    Article  CAS  Google Scholar 

  14. Zhang Z, Gu S, Ding Y, Shen M, Jiang L. Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens Bioelectron. 2014;57:239–44.

    Article  CAS  Google Scholar 

  15. Li J, Qu J, Yang R, Qu L, Harrington PB. A sensitive and selective electrochemical sensor based on graphene quantum dot/gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples. Electroanalysis. 2016;28:1–10.

    Article  CAS  Google Scholar 

  16. Atay S, Pişkin K, Yılmaz F, Çakır C, Yavuz H, Denizli A. Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods. 2016;8:153–61.

    Article  CAS  Google Scholar 

  17. Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, et al. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanal Chem. 2007;388:367–75.

    Article  CAS  Google Scholar 

  18. Lee M, Lee S, Yim C, Jeon S. Surface wetting of superhydrophobic aluminum oxide nanostructures investigated using the fiber-optic spectrometer and quartz crystal microbalance. Sensors Actuators B Chem. 2015;220:799–804.

    Article  CAS  Google Scholar 

  19. Dorvel BR, Keizer HM, Fine D, Vuorinen J, Dodabalapur A, Duran RS. Formation of tethered bilayer lipid membranes on gold surfaces: QCM-Z and AFM study. Langmuir. 2007;23:7344–55.

    Article  CAS  Google Scholar 

  20. Sauerbrey G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z Phys. 1959;155:206–22.

    Article  CAS  Google Scholar 

  21. Latif U, Can S, Hayden O, Grillberger P, Dickert FL. Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors—detection of bioanalytes. Sensors Actuators B Chem. 2013;176:825–30.

    Article  CAS  Google Scholar 

  22. Kanazawa KK, Gordon JG. Frequency of a quartz microbalance in contact with liquid. Anal Chem. 1985;57:1770–1.

    Article  CAS  Google Scholar 

  23. Martin SJ, Granstaff VE, Frye GC. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem. 1991;63:2272–81.

    Article  CAS  Google Scholar 

  24. Granstaff VE, Martin SJ. Characterization of a thickness–shear mode quartz resonator with multiple nonpiezoelectric layers. J Appl Phys. 1994;75:1319–29.

    Article  CAS  Google Scholar 

  25. Wegener J, Janshoff A, Galla HJ. Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J. 1998;28:26–37.

    Article  CAS  Google Scholar 

  26. Marx KA, Zhou T, Warren M, Braunhut SJ. Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior: evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnol Prog. 2003;19:987–99.

    Article  CAS  Google Scholar 

  27. Tan L, Xie Q, Jia X, Guo M, Zhang Y, Tang H, et al. Dynamic measurement of the surface stress induced by the attachment and growth of cells on Au electrode with a quartz crystal microbalance. Biosens Bioelectron. 2009;24:1603–9.

    Article  CAS  Google Scholar 

  28. Tan L, Lin P, Pezeshkian B, Rehman A, Madlambayan G, Zeng X. Real-time monitoring of cell mechanical changes induced by endothelial cell activation and their subsequent binding with leukemic cell lines. Biosens Bioelectron. 2014;56:151–8.

    Article  CAS  Google Scholar 

  29. Ishay RB, Kapp-Barnea Y, Grigoriantz I, Teblum E, Lellouche JP. Real time acoustic profiling of a live cancerous cell monolayer using QCM. Sensors Actuators B Chem. 2015;215:373–81.

    Article  CAS  Google Scholar 

  30. Nowacki L, Follet J, Vayssade M, Vigneron P, Rotellini L, Cambay F, et al. Real-time QCM-D monitoring of cancer cell death early events in a dynamic context. Biosens Bioelectron. 2015;64:469–76.

    Article  CAS  Google Scholar 

  31. Tan L, Jia X, Jiang X, Zhang Y, Tang H, Yao S, et al. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron. 2009;24:2268–72.

    Article  CAS  Google Scholar 

  32. Kang HW, Muramatsu H, Lee BJ, Kwon YS. Monitoring of anticancer effect of cisplatin and 5-fluorouracil on HepG2 cells by quartz crystal microbalance and micro CCD camera. Biosens Bioelectron. 2010;26:1576–81.

    Article  CAS  Google Scholar 

  33. Zhou Y, Jia X, Tan L, Xie Q, Lei L, Yao S. Magnetically enhanced cytotoxicity of paramagnetic selenium-ferroferric oxide nanocomposites on human osteoblast-like MG-63 cells. Biosens Bioelectron. 2010;25:1116–21.

    Article  CAS  Google Scholar 

  34. Redepenning J, Schlesinger TK, Mechalke EJ, Puleo DA, Bizios R. Osteoblast attachment monitored with a quartz crystal microbalance. Anal Chem. 1993;65:3378–81.

    Article  CAS  Google Scholar 

  35. Calvo EJ, Danilowicz C, Etchenique R. Measurement of viscoelastic changes at electrodes modified with redox hydrogels with a quartz crystal device. J Chem Soc Faraday Trans. 1995;91:4083–91.

    Article  CAS  Google Scholar 

  36. Xie Q, Wang J, Zhou A, Zhang Y, Liu H, Xu Z, et al. A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system. Anal Chem. 1999;71:4649–56.

    Article  CAS  Google Scholar 

  37. Lin Z, Ward MD. The role of longitudinal waves in quartz crystal microbalance applications in liquids. Anal Chem. 1995;67:685–93.

    Article  CAS  Google Scholar 

  38. Matsuda T, Kishida A, Ebato H, Okahata Y. Novel instrumentation monitoring in situ platelet adhesivity with a quartz crystal microbalance. ASAIO J. 1992;38:M171–3.

    Article  CAS  Google Scholar 

  39. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 2007;8:722–8.

    Article  CAS  Google Scholar 

  40. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res. 2003;63:2705–15.

    CAS  Google Scholar 

  41. Geiser T, Ishigaki M, van Leer C, Matthay MA, Broaddus VC. H2O2 inhibits alveolar epithelial wound repair in vitro by induction of apoptosis. Am J Physiol Lung Cell Mol Physiol. 2004;287:L448–53.

    Article  CAS  Google Scholar 

  42. Al-Majmaie R, Kennedy E, Al-Rubeai M, Rice JH, Zerulla D. AFM-based bivariate morphological discrimination of apoptosis induced by photodynamic therapy using photosensitizer-functionalized gold nanoparticles. RSC Adv. 2015;5:82983–91.

    Article  CAS  Google Scholar 

  43. Xu GR, In MY, Yuan Y, Lee JJ, Kim S. In situ spectroelectrochemical study of quercetin oxidation and complexation with metal ions in acidic solutions. Bull Korean Chem Soc. 2007;28:889–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the financial support from the Scientific Research Fund of Hunan Provincial Education Department (14A095) and the Open Sustentation Fund of State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University (2014007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, W., Kong, L. et al. Real-time monitoring of oxidative injury of vascular endothelial cells and protective effect of quercetin using quartz crystal microbalance. Anal Bioanal Chem 408, 8415–8425 (2016). https://doi.org/10.1007/s00216-016-9959-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9959-0

Keywords

Navigation