Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 28, pp 7897–7903 | Cite as

Volume determination of irregularly-shaped quasi-spherical nanoparticles

  • Ravi Kiran AttotaEmail author
  • Eileen Cherry Liu
Rapid Communication

Abstract

Nanoparticles (NPs) are widely used in diverse application areas, such as medicine, engineering, and cosmetics. The size (or volume) of NPs is one of the most important parameters for their successful application. It is relatively straightforward to determine the volume of regular NPs such as spheres and cubes from a one-dimensional or two-dimensional measurement. However, due to the three-dimensional nature of NPs, it is challenging to determine the proper physical size of many types of regularly and irregularly-shaped quasi-spherical NPs at high-throughput using a single tool. Here, we present a relatively simple method that determines a better volume estimate of NPs by combining measurements from their top-down projection areas and peak heights using two tools. The proposed method is significantly faster and more economical than the electron tomography method. We demonstrate the improved accuracy of the combined method over scanning electron microscopy (SEM) or atomic force microscopy (AFM) alone by using modeling, simulations, and measurements. This study also exposes the existence of inherent measurement biases for both SEM and AFM, which usually produce larger measured diameters with SEM than with AFM. However, in some cases SEM measured diameters appear to have less error compared to AFM measured diameters, especially for widely used IS-NPs such as of gold, and silver. The method provides a much needed, proper high-throughput volumetric measurement method useful for many applications.

Graphical Abstract

The combined method for volume determination of irregularly-shaped quasi-spherical nanoparticles

Keywords

Nanoparticles Characterization Irregularly-shaped nanoparticles Quasi-spherical nanoparticles Spherical volume equivalent diameter Nanotechnology 

Notes

Acknowledgments

The authors would like to thank John Kramar for the useful discussions, Andras Vladar for providing high-quality SEM images of Au nanoparticles used in Ref. [29], and the Summer Undergraduate Research Fellowship (SURF) program of NIST and NSF for providing an internship to Eileen Liu.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

216_2016_9909_MOESM1_ESM.pdf (923 kb)
ESM 1 (PDF 922 kb)
ESM 2

(MOV 1388 kb)

ESM 3

(MOV 2580 kb)

ESM 4

(MOV 2555 kb)

References

  1. 1.
    Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res. 2013;15(12).Google Scholar
  2. 2.
    Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanopart Res. 2011;13(2):427–45.CrossRefGoogle Scholar
  3. 3.
    Delvallee A, Feltin N, Ducourtieux S, Trabelsi M, Hochepied JF. Direct comparison of AFM and SEM measurements on the same set of nanoparticles. Meas Sci Technol. 2015;26(8).Google Scholar
  4. 4.
    Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.CrossRefGoogle Scholar
  5. 5.
    Ko SH, Vargas-Lara F, Patrone PN, Stavis SM, Starr FW, Douglas JF, et al. High-speed, high-purity separation of gold nanoparticle-DNA origami constructs using centrifugation. Soft Matter. 2014;10(37):7370–8.CrossRefGoogle Scholar
  6. 6.
    Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol-Uk. 2013;5(1):66–73.CrossRefGoogle Scholar
  7. 7.
    Fadeel B, Fornara A, Toprak MS, Bhattacharya K. Keeping it real: the importance of material characterization in nanotoxicology. Biochem Biophys Res Commun. 2015.Google Scholar
  8. 8.
    Krug HF. Nanosafety research-are we on the right track? Angew Chem Int Ed. 2014;53(46):12304–19.Google Scholar
  9. 9.
    Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, et al. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater. 2009;21(16):1549–59.CrossRefGoogle Scholar
  10. 10.
    Schrurs F, Lison D. Focusing the research efforts. Nat Nanotechnol. 2012;7(9):546–8.CrossRefGoogle Scholar
  11. 11.
    Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5(7):846–53.CrossRefGoogle Scholar
  12. 12.
    Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 2007;95(2):300–12.CrossRefGoogle Scholar
  13. 13.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.CrossRefGoogle Scholar
  14. 14.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.CrossRefGoogle Scholar
  15. 15.
    Linsinger TPJ, Roebben G, Solans C, Ramsch R. Reference materials for measuring the size of nanoparticles. TrAC Trend Anal Chem. 2011;30(1):18–27.CrossRefGoogle Scholar
  16. 16.
    Reich ES. Nano rules fall foul of data gap. Nature. 2011;480(7376):160–1.CrossRefGoogle Scholar
  17. 17.
    Join the dialogue. Nat Nanotechnol. 2012;7(9):545.Google Scholar
  18. 18.
    Meli F, Klein T, Buhr E, Frase CG, Gleber G, Krumrey M, et al. Traceable size determination of nanoparticles, a comparison among European metrology institutes. Meas Sci Technol. 2012;23(12).Google Scholar
  19. 19.
    Wang CY, Fu WE, Lin HL, Peng GS. Preliminary study on nanoparticle sizes under the APEC technology cooperative framework. Meas Sci Technol. 2007;18(2):487–95.CrossRefGoogle Scholar
  20. 20.
    Motzkus C, Mace T, Gaie-Levrel F, Ducourtieux S, Delvallee A, Dirscherl K, et al. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J Nanopart Res. 2013;15(10).Google Scholar
  21. 21.
    MacCuspie RI, Rogers K, Patra M, Suo ZY, Allen AJ, Martin MN, et al. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions. J Environ Monit. 2011;13(5):1212–26.CrossRefGoogle Scholar
  22. 22.
    Coleman VA, Jamting AK, Catchpoole HJ, Roy M, Herrmann J. Nanoparticles and metrology: a comparison of methods for the determination of particle size distributions. Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors V. 2011;8105.Google Scholar
  23. 23.
    Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.CrossRefGoogle Scholar
  24. 24.
    Thomas JM, Midgley PA, Ducati C, Leary RK. Nanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: a short surveyNanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: a short surveyretain–&gt. Prog Nat Sci Mater Int. 2013;23(3):222–34.CrossRefGoogle Scholar
  25. 25.
    Midgley PA, Ward EPW, Hungria AB, Thomas JM. Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev. 2007;36(9):1477–94.CrossRefGoogle Scholar
  26. 26.
    Hayashida M, Kumagai K, Malac M. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography. Micron. 2015;79:53–8.CrossRefGoogle Scholar
  27. 27.
    Migunov V, Ryll H, Zhuge X, Simson M, Strüder L, Batenburg KJ, et al. Rapid low dose electron tomography using a direct electron detection camera. Sci Rep-Uk. 2015;5:14516.CrossRefGoogle Scholar
  28. 28.
    Van Doren EAF, De Temmerman PJRH, Francisco MAD, Mast J. Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J Nanobiotechnol. 2011;9.Google Scholar
  29. 29.
    Vladar A. Measuring the size of colloidal gold nano-particles using high-resolution scanning electron microscopy. National Institute of Standards and Technology, DOC; 2011.Google Scholar
  30. 30.
    Grobelny J, DelRio FW, Pradeep N, Kim DI, Hackley VA, Cook RF. Size measurement of nanoparticles using atomic force microscopy. Methods Mol Biol (Clifton, NJ). 2011;697:71–82.CrossRefGoogle Scholar
  31. 31.
    Mulholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA, Pui DYH. Measurement of 100 nm and 60 nm particle standards by differential mobility analysis. J Res Natl Inst Stand Technol. 2006;111(4):257–312.CrossRefGoogle Scholar
  32. 32.
    Malysheva A, Lombi E, Voelcker NH. Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol. 2015;10(10):835–44.CrossRefGoogle Scholar
  33. 33.
    Montano MD, Lowry GV, von der Kammer F, Blue J, Ranville JF. Current status and future direction for examining engineered nanoparticles in natural systems. Environ Chem. 2014;11(4):351–66.CrossRefGoogle Scholar
  34. 34.
    Attota R, Kavuri PP, Kang H, Kasica R, Chen L. Nanoparticle size determination using optical microscopes. Appl Phys Lett. 2014;105(16).Google Scholar
  35. 35.
    Kang H, Attota R, Tondare V, Vladár AE, Kavuri P. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes. Appl Phys Lett. 2015;107(10):103106.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Engineering Physics Division, Physical Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations