Skip to main content
Log in

Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances.

Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corbett JJ, Koehler HW (2003) J Geophys Res D Atmos 108:ACH 9-1–ACH 9-15

    Article  Google Scholar 

  2. Corbett JJ, Winebrake JJ, Green EH, Kasibhatla P, Eyring V, Lauer A (2007) Environ Sci Technol 41:8512–8518

    Article  CAS  Google Scholar 

  3. Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Atmos Environ 44:4735–4771

    Article  CAS  Google Scholar 

  4. Endresen O, Sørgård E, Sundet JK, Dalsøren SB, Isaksen ISA, Berglen TF, Gravir G (2003) J Geophys Res D Atmos 108:ACH 14-1–ACH 14-22

    Article  Google Scholar 

  5. Saxe H, Larsen T (2004) Atmos Environ 38:4057–4067

    Article  CAS  Google Scholar 

  6. Eyring V, Köhler HW, Van Aardenne J, Lauer A (2005) J Geophys Res D Atmos 110:171–182

    Google Scholar 

  7. Smith TWP, Jalkanen JP, Anderson BA, Corbett JJ, Faber J, Hanayama S, O’Keeffe E, Parker S, Johansson L, Aldous L, Raucci C, Traut M, Ettinger S, Nelissen D, Lee DS, Ng S, Agrawal A, Winebrake JJ, Hoen M, Chesworth S, Pandey A (2014) Third IMO GHG study 2014. International Maritime Organization (IMO), London

    Google Scholar 

  8. Sinha P, Hobbs PV, Yokelson RJ, Christian TJ, Kirchstetter TW, Bruintjes R (2003) Atmos Environ 37:2139–2148

    Article  CAS  Google Scholar 

  9. Capaldo K, Corbett JJ, Kasibhatla P, Fischbeck P, Pandis SN (1999) Nature 400:743–746

    Article  CAS  Google Scholar 

  10. Agrawal H, Welch WA, Miller JW, Cocker DR (2008) Environ Sci Technol 42:7098–7103

    Article  CAS  Google Scholar 

  11. Sippula O, Stengel B, Sklorz M, Streibel T, Rabe R, Orasche J, Lintelmann J, Michalke B, Abbaszade G, Radischat C, Gröger T, Schnelle-Kreis J, Harndorf H, Zimmermann R (2014) Environ Sci Technol 48:11721–11729

    Article  CAS  Google Scholar 

  12. Cooper DA (2003) Atmos Environ 37:3817–3830

    Article  CAS  Google Scholar 

  13. Fridell E, Steen E, Peterson K (2008) Atmos Environ 42:1160–1168

    Article  CAS  Google Scholar 

  14. Fu M, Ding Y, Ge Y, Yu L, Yin H, Ye W, Liang B (2013) Atmos Environ 81:222–229

    Article  CAS  Google Scholar 

  15. Kasper A, Aufdenblatten S, Forss A, Mohr M, Burtscher H (2007) Aerosol Sci Technol 41:24–32

    Article  CAS  Google Scholar 

  16. Siegl WO, Hammerle RH, Herrmann HM, Wenclawiak BW, Luers-Jongen B (1999) Atmos Environ 33:797–805

    Article  CAS  Google Scholar 

  17. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Environ Sci Technol 33:1578–1587

    Article  CAS  Google Scholar 

  18. Cooper DA, Peterson K, Simpson D (1996) Atmos Environ 30:2463–2473

    Article  CAS  Google Scholar 

  19. Jobson BT, Alexander ML, Maupin GD, Muntean GG (2005) Int J Mass Spectrom 245:78–89

    Article  CAS  Google Scholar 

  20. Adam TW, Chirico R, Clairotte M, Elsasser M, Manfredi U, Martini G, Sklorz M, Streibel T, Heringa MF, Decarlo PF, Baltensperger U, De Santi G, Krasenbrink A, Zimmermann R, Prevot ASH, Astorga C (2011) Anal Chem 83:67–76

    Article  CAS  Google Scholar 

  21. Adam TW, Clairotte M, Streibel T, Elsasser M, Pommeres A, Manfredi U, Carriero M, Martini G, Sklorz M, Krasenbrink A, Astorga C, Zimmermann R (2012) Anal Bioanal Chem 404:273–276

    Article  CAS  Google Scholar 

  22. Butcher DJ, Goeringer DE, Hurst GB (1999) Anal Chem 71:489–496

    Article  CAS  Google Scholar 

  23. Sarvi A, Fogelholm CJ, Zevenhoven R (2008) Fuel Process Technol 89:510–519

    Article  CAS  Google Scholar 

  24. Sarvi A, Fogelholm CJ, Zevenhoven R (2008) Fuel Process Technol 89:520–527

    Article  CAS  Google Scholar 

  25. Boesl U, Zimmermann R, Weickhardt C, Lenoir D, Schramm KW, Kettrup A, Schlag EW (1994) Chemosphere 29:1429–1440

    Article  CAS  Google Scholar 

  26. Heger HJ (1999) Anal Chem 71:46–57

    Article  CAS  Google Scholar 

  27. Boesl U, Neusser HJ, Schlag EW (1981) Chem Phys 55:193–204

    Article  CAS  Google Scholar 

  28. Schwoebel H, Schubert R, Sklorz M, Kischkel S, Zimmermann R, Schubert JK, Miekisch W (2011) Anal Bioanal Chem 401:2079–2091

    Article  CAS  Google Scholar 

  29. De Gouw J, Warneke C, Karl T, Eerdekens G, Van der Veen C, Fall R (2003) Int J Mass Spectrom 223–224:365–382

    Article  Google Scholar 

  30. De Gouw J, Warneke C (2007) Mass Spectrom Rev 26:223–257

    Article  Google Scholar 

  31. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Int J Mass Spectrom Ion Processes 149–150:609–619

    Article  Google Scholar 

  32. Zielinska B, Sagebiel JC, Harshfield G, Gertler AW, Pierson WR (1996) Atmos Environ 30:2269–2286

    Article  CAS  Google Scholar 

  33. Khalili NR, Scheff PA, Holsen TM (1995) Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  34. Cooper DA (2001) Atmos Environ 35:4189–4200

    Article  CAS  Google Scholar 

  35. Williams PT, Abbass MK, Andrews GE, Bartle KD (1989) Combust Flame 75:1–24

    Article  CAS  Google Scholar 

  36. Rhead MM, Hardy SA (2003) Fuel 82:385–393

    Article  CAS  Google Scholar 

  37. Schmitz T, Hassel D, Weber FJ (2000) Atmos Environ 34:4639–4647

    Article  CAS  Google Scholar 

  38. Ogawa H, Li T (2011) Int J Engine Res 12:30–40

    Article  CAS  Google Scholar 

  39. Lias SG, Liebman JF, Levin RD (1984) J Phys Chem Ref Data 13:695–808

    Article  CAS  Google Scholar 

  40. Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  41. Reda AA, Schnelle-Kreis J, Orasche J, Abbaszade G, Lintelmann J, Arteaga-Salas JM, Stengel B, Rabe R, Harndorf H, Sippula O, Streibel T, Zimmermann R (2014) Atmos Environ 94:467–478

    Article  CAS  Google Scholar 

  42. Wagner T (1996) P I Mech Eng D J Aut 210:109–122

    Article  Google Scholar 

Download references

Acknowledgments

Funding by the Helmholtz Foundation for the HICE Virtual Institute (www.hice-vi.eu) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Streibel.

Additional information

Published in the topical collection Aerosols and Health with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radischat, C., Sippula, O., Stengel, B. et al. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry. Anal Bioanal Chem 407, 5939–5951 (2015). https://doi.org/10.1007/s00216-015-8465-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8465-0

Keywords

Navigation