Analytical and Bioanalytical Chemistry

, Volume 405, Issue 1, pp 307–314 | Cite as

Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip

  • Peng Chen
  • Pu Chen
  • Xiaojun Feng
  • Wei Du
  • Bi-Feng LiuEmail author
Original Paper


Intercellular Ca2+ waves are propagation of Ca2+ transients among cells that could be initiated by chemical stimulation. Current methods for analyzing intercellular Ca2+ waves are difficult to realize localized chemical stimulations upon the target cell without interfering with adjacent contacting cells. In this paper, a simple and flexible microfluidic method was developed for investigating the intercellular communication of Ca2+ signals. A cross-patterned microfluidic chip was designed and fabricated with polydimethylsiloxane as the structural material. Localized chemical stimulation was achieved by a new strategy based on hydrodynamic gating technique. Clusters of target cells were seeded at the location within 300 μm downstream of the intersection of the cross-shaped microchannel. Confined lateral molecular diffusion largely minimized the interference from diffusion-induced stimulation of adjacent cells. Localized stimulation of the target cell with adenosine 5′-triphosphate successfully induced the propagation of intercellular Ca2+ waves among a population of adjacent contacting cells. Further inhibition studies verified that the propagation of calcium signals among NIH-3 T3 cells was dependent on direct cytosolic transfer via gap junctions. The developed microfluidic method provides a versatile platform for investigating the dynamics of intercellular communications.


Analysis of intercellular communication by flexible hydrodynamic gating

Open image in new window


Microfluidic chip Hydrodynamic gating Intercellular communication Ca2+ waves 



The authors gratefully acknowledge the financial supports from National Basic Research Program of China (2011CB910403) and National Natural Science Foundation of China (30970692 and 21075045).

Supplementary material

216_2012_6447_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1236 kb)
Video S1

Numerical simulations of different gating and injection states (MPG 3090 kb)

Video S2

Visualization study of different gating and injection states (MPG 2756 kb)


  1. 1.
    Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB (1997) Cell 91:833–843CrossRefGoogle Scholar
  2. 2.
    White TW (2002) Science 295:319–320CrossRefGoogle Scholar
  3. 3.
    Berridge MJ, Bootman MD, Lipp P (1998) Nature 395:645–648CrossRefGoogle Scholar
  4. 4.
    Evans WH, Martin PE (2002) Mol Membr Biol 19:121–136CrossRefGoogle Scholar
  5. 5.
    Unwin PN, Zampighi G (1980) Nature 283:545–549CrossRefGoogle Scholar
  6. 6.
    Kumar NM, Gilula NB (1996) Cell 84:381–388CrossRefGoogle Scholar
  7. 7.
    Gerido DA, White TW (2004) Biochim Biophys Acta 1662:159–170CrossRefGoogle Scholar
  8. 8.
    Gerido DA, DeRosa AM, Richard G, White TW (2007) Am J Physiol Cell Physiol 293:C337–C345CrossRefGoogle Scholar
  9. 9.
    Ryu SY, Peixoto PM, Won JH, Yule DI, Kinnally KW (2010) Cell Calcium 47:65–76CrossRefGoogle Scholar
  10. 10.
    Schipke CG, Haas B, Kettenmann H (2008) Cereb Cortex 18:2450–2459CrossRefGoogle Scholar
  11. 11.
    Samuels SE, Lipitz JB, Dahl G, Muller KJ (2010) J Gen Physiol 136:425–442CrossRefGoogle Scholar
  12. 12.
    Bae AJ, Beta C, Bodenschatz E (2009) Lab Chip 9:3059–3065CrossRefGoogle Scholar
  13. 13.
    El-Ali J, Sorger PK, Jensen KF (2006) Nature 442:403–411CrossRefGoogle Scholar
  14. 14.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Nature 411:1016CrossRefGoogle Scholar
  15. 15.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Chem Biol 10:123–130CrossRefGoogle Scholar
  16. 16.
    Kaji H, Nishizawa M, Matsue T (2003) Lab Chip 3:208–211CrossRefGoogle Scholar
  17. 17.
    Sawano A, Takayama S, Matsuda M, Miyawaki A (2002) Dev Cell 3:245–257CrossRefGoogle Scholar
  18. 18.
    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Nature 434:1134–1138CrossRefGoogle Scholar
  19. 19.
    Sun J, Zheng Y, Feng X, Du W, Liu BF (2012) Anal Chim Acta 721:104–109CrossRefGoogle Scholar
  20. 20.
    Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D (2007) Lab Chip 7:71–76CrossRefGoogle Scholar
  21. 21.
    Xu T, Li CW, Yao X, Cai G, Yang M (2010) Anal Biochem 396:173–179CrossRefGoogle Scholar
  22. 22.
    Bathany C, Beahm D, Felske JD, Sachs F, Hua SZ (2011) Anal Chem 83:933–939CrossRefGoogle Scholar
  23. 23.
    Ye NN, Bathany C, Hua SZ (2011) Lab Chip 11:1096–1101CrossRefGoogle Scholar
  24. 24.
    Lee PJ, Hung PJ, Shaw R, Jan L, Lee LP (2005) Appl Phys Lett 86Google Scholar
  25. 25.
    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Anal Chem 70:4974–4984CrossRefGoogle Scholar
  26. 26.
    Zhang G, Du W, Liu BF, Hisamoto H, Terabe S (2007) Anal Chim Acta 584:129–135CrossRefGoogle Scholar
  27. 27.
    Chen P, Feng X, Sun J, Wang Y, Du W, Liu BF (2010) Lab Chip 10:1472–1475CrossRefGoogle Scholar
  28. 28.
    Chen P, Feng X, Hu R, Sun J, Du W, Liu BF (2010) Anal Chim Acta 663:1–6CrossRefGoogle Scholar
  29. 29.
    Huo B, Lu XL, Hung CT, Costa KD, Xu Q, Whitesides GM, Guo XE (2008) Cell Mol Bioeng 1:58–66CrossRefGoogle Scholar
  30. 30.
    Sun J, Wang J, Chen P, Feng X, Du W, Liu BF (2011) Anal Bioanal Chem 400:2973–2981CrossRefGoogle Scholar
  31. 31.
    Oh KW, Lee K, Ahn B, Furlani EP (2012) Lab Chip 12:515–545CrossRefGoogle Scholar
  32. 32.
    Kim Y, Kuczenski B, LeDuc PR, Messner WC (2009) Lab Chip 9:2603–2609CrossRefGoogle Scholar
  33. 33.
    Schmidt JA, Black J (1992) Biomaterials 13:483–487CrossRefGoogle Scholar
  34. 34.
    Paemeleire K, Martin PE, Coleman SL, Fogarty KE, Carrington WA, Leybaert L, Tuft RA, Evans WH, Sanderson MJ (2000) Mol Biol Cell 11:1815–1827Google Scholar
  35. 35.
    Rottingen J, Iversen JG (2000) Acta Physiol Scand 169:203–219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peng Chen
    • 1
  • Pu Chen
    • 1
  • Xiaojun Feng
    • 1
  • Wei Du
    • 1
  • Bi-Feng Liu
    • 1
    Email author
  1. 1.Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations