Analytical and Bioanalytical Chemistry

, Volume 404, Issue 10, pp 2841–2849 | Cite as

Filter-free integrated sensor array based on luminescence and absorbance measurements using ring-shaped organic photodiodes

  • Tobias Abel
  • Martin Sagmeister
  • Bernhard Lamprecht
  • Elke Kraker
  • Stefan Köstler
  • Birgit Ungerböck
  • Torsten MayrEmail author
Original Paper


An optical waveguiding sensor array featuring monolithically integrated organic photodiodes as integrated photo-detector, which simplifies the readout system by minimizing the required parts, is presented. The necessity of any optical filters becomes redundant due to the proposed platform geometry, which discriminates between excitation light and sensing signal. The sensor array is capable of measuring luminescence or absorption, and both sensing geometries are based on the identical substrate. It is demonstrated that background light is virtually non-existent. All sensing and waveguide layers, as well as in- and out-coupling elements are assembled by conventional screen-printing techniques. Organic photodiodes are integrated by layer-by-layer vacuum deposition onto glass or common polymer foils. The universal and simple applicability of this sensor chip is demonstrated by sensing schemes for four different analytes. Relative humidity, oxygen, and carbon dioxide are measured in gas phase using luminescence-based sensor schemes; the latter two analytes are also measured by absorbance-based sensor schemes. Furthermore, oxygen and pH in aqueous media were enabled. The consistency of calibration characteristics extending over different sensor chips is verified.


Integrated fluorescence (left) and absorbance (right) based sensor waveguide


Optical sensor Organic photodiode Sensor array Integrated sensor Optoelectronic Screen-printing 

Supplementary material


(MPG 14240 kb)

216_2012_6175_MOESM2_ESM.pdf (302 kb)
ESM 2 (PDF 301 kb)


  1. 1.
    Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669CrossRefGoogle Scholar
  2. 2.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422CrossRefGoogle Scholar
  3. 3.
    Schmidt O, Bassler M, Kiesel P et al (2007) Fluorescence spectrometer-on-a-fluidic-chip. Lab Chip 7:626–629CrossRefGoogle Scholar
  4. 4.
    Chediak JA, Luo Z, Seo J et al (2004) Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems. Sens Actuators A 111:1–7CrossRefGoogle Scholar
  5. 5.
    Daw R, Finkelstein J (2006) Lab on a chip. Nature 442:367–367CrossRefGoogle Scholar
  6. 6.
    Verpoorte E (2003) Focus Lab Chip 3:42N–52NCrossRefGoogle Scholar
  7. 7.
    Mogensen KB, Klank H, Kutter JP (2004) Recent developments in detection for microfluidic systems. Electrophoresis 25:3498–3512CrossRefGoogle Scholar
  8. 8.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723CrossRefGoogle Scholar
  9. 9.
    Song QL, Li FY, Yang H et al (2005) Small-molecule organic solar cells with improved stability. Chem Phys Lett 416:42–46CrossRefGoogle Scholar
  10. 10.
    Lamprecht B, Thünauer R, Köstler S et al (2008) Spectrally selective organic photodiodes. Phys Status Solidi RRL 2:178–180CrossRefGoogle Scholar
  11. 11.
    Lamprecht B, Thünauer R, Ostermann M et al (2005) Organic photodiodes on newspaper. Phys Status Solidi A 202:R50–R52CrossRefGoogle Scholar
  12. 12.
    Savvate’ev V, Chen-Esterlit Z, Aylott JW et al (2002) Integrated organic light-emitting device/fluorescence-based chemical sensors. Appl Phys Lett 81:4652–4654CrossRefGoogle Scholar
  13. 13.
    Qiu Y, Yao B, Luo G et al (2005) A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab Chip 5:1041–1047CrossRefGoogle Scholar
  14. 14.
    Pais A, Banerjee A, Klotzkin D, Papautsky I (2008) High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip 8:794–800CrossRefGoogle Scholar
  15. 15.
    Ryu G, Huang J, Hofmann O et al (2011) Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. Lab Chip 11:1664–1670CrossRefGoogle Scholar
  16. 16.
    Novak L, Neuzil P, Pipper J et al (2007) An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7:27–29CrossRefGoogle Scholar
  17. 17.
    Shinar J, Shinar R (2008) Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J Phys D 41:133001CrossRefGoogle Scholar
  18. 18.
    Borisov S, Krause C, Arain S, Wolfbeis OS (2006) Composite material for simultaneous and contactless luminescent sensing and imaging of oxygen and carbon dioxide. Adv Mater 18:1511–1516CrossRefGoogle Scholar
  19. 19.
    Schröder CR, Klimant I (2005) The influence of the lipophilic base in solid state optical pCO2 sensors. Sens Actuators B 107:572–579CrossRefGoogle Scholar
  20. 20.
    Lamprecht B, Abel T, Kraker E et al (2010) Integrated fluorescence sensor based on ring–shaped organic photodiodes. Phys Status Solidi RRL 4:157–159CrossRefGoogle Scholar
  21. 21.
    Lamprecht B, Kraker E, Sagmeister M et al (2011) Integrated waveguide sensor utilizing organic photodiodes. Phys Status Solidi RRL 5:344–346CrossRefGoogle Scholar
  22. 22.
    Tang CW (1986) Two–layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  23. 23.
    Lee SK, Okura I (1997) Photostable optical oxygen sensing material: platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polystyrene. Anal Commun 34:185–188CrossRefGoogle Scholar
  24. 24.
    Douglas P, Eaton K (2002) Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films. Sens Actuators B 82:200–208CrossRefGoogle Scholar
  25. 25.
    Mayr T, Borisov SM, Abel T et al (2009) Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal Chem 81:6541–6545CrossRefGoogle Scholar
  26. 26.
    Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501–7509CrossRefGoogle Scholar
  27. 27.
    Mills A, Eaton K (2000) Optical sensors for carbon dioxide: an overview of sensing strategies past and present. Quim Anal 19:75–86Google Scholar
  28. 28.
    Neurauter G, Klimant I, Wolfbeis OS (2000) Fiber-optic microsensor for high resolution pCO2 sensing in marine environment. Fresenius J Anal Chem 366:481–487CrossRefGoogle Scholar
  29. 29.
    Borisov SM, Herrod DL, Klimant I (2009) Fluorescent poly(styrene-block-vinylpyrrolidone) nanobeads for optical sensing of pH. Sens Actuators B 139:52–58CrossRefGoogle Scholar
  30. 30.
    Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75CrossRefGoogle Scholar
  31. 31.
    Sipior J, Bambot S, Romauld M et al (1995) A lifetime-based optical CO2 gas sensor with blue or red excitation and stokes or anti-stokes detection. Anal Biochem 227:309–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tobias Abel
    • 1
  • Martin Sagmeister
    • 2
  • Bernhard Lamprecht
    • 2
  • Elke Kraker
    • 2
  • Stefan Köstler
    • 2
  • Birgit Ungerböck
    • 1
  • Torsten Mayr
    • 1
    Email author
  1. 1.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria
  2. 2.JOANNEUM Research-Institute for Surface Technologies and PhotonicsWeizAustria

Personalised recommendations