Advertisement

On the role of vibrational selective scaling for the calculation of enthalpies of formation using a composite method

  • Nicola Leone da Rocha
  • Rogério CustodioEmail author
Regular Article
  • 65 Downloads
Part of the following topical collections:
  1. Prof. Fernando R. Ornellas Festschrift

Abstract

Single vibrational scaling factors for the calculation of enthalpies of formation at a given level of theory are widely used and statistically correct. However, it can be shown that for several molecules the error is substantial, and it is possible to determine selective molecular scaling factors that minimize or eliminate the deviation between theoretical enthalpies of formation with respect to accurate experimental data. Selective scaling factors for 248 enthalpies of formation relative to the experimental data using the G3(MP2)//B3-CEP composite method reduced the mean absolute error from 1.55 to 0.64 kcal mol−1. This error is smaller than the mean absolute error of some of the most sophisticated methods from the Gn family and other composite methods. The similarity among scaling parameters for molecules with comparable characteristics indicates that the optimum parameters are not a random empirical adjustment but must be related to the nature of the chemical bonds, the atomic species, and possibly the level of theory used. Molecules with the same functional groups and similar types of bonds presented similar vibrational scaling factors.

Keywords

Composite method Vibrational scaling Enthalpy of formation Selective scaling Pseudopotential 

Notes

Acknowledgments

We acknowledge financial support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Center for Computational Engineering and Sciences, Grant Nos. 2013/08293-7 and 2017/11485-6) and FAEPEX-UNICAMP (Fundo de Apoio ao Ensino, à Pesquisa e à Extensão da UNICAMP). This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The National Center of High-Performance Computing in São Paulo (CENAPAD-SP) is acknowledged for access to their computational facilities.

Supplementary material

214_2020_2552_MOESM1_ESM.docx (189 kb)
Supplementary material 1 (DOCX 188 kb)

References

  1. 1.
    Pople JA, Head-Gordon M, Fox DJ et al (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629.  https://doi.org/10.1063/1.456415 CrossRefGoogle Scholar
  2. 2.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079.  https://doi.org/10.1063/1.473182 CrossRefGoogle Scholar
  3. 3.
    Curtiss LA, Redfern PC, Raghavachari K (2005) Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J Chem Phys 123:124107–124118.  https://doi.org/10.1063/1.2039080 CrossRefPubMedGoogle Scholar
  4. 4.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) Gaussian-3X (G3X) theory: use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J Chem Phys 114:108–117.  https://doi.org/10.1063/1.1321305 CrossRefGoogle Scholar
  5. 5.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108–084119.  https://doi.org/10.1063/1.2436888 CrossRefPubMedGoogle Scholar
  6. 6.
    Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) Implementation of pseudopotential in the G3 theory for molecules containing first-, second-, and non-transition third-row atoms. J Chem Phys 135:034106.  https://doi.org/10.1063/1.3609241 CrossRefPubMedGoogle Scholar
  7. 7.
    Rocha CMR, Pereira DH, Morgon NH, Custodio R (2013) Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements. J Chem Phys 139:184108.  https://doi.org/10.1063/1.4826519 CrossRefPubMedGoogle Scholar
  8. 8.
    Pereira DH, Rocha CMR, Morgon NH, Custodio R (2015) G3(MP2)-CEP theory and applications for compounds containing atoms from representative first, second and third row elements of the periodic table. J Mol Model.  https://doi.org/10.1007/s00894-015-2757-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Silva CS, Pereira DH, Custodio R (2016) G4CEP: a G4 theory modification by including pseudopotential for molecules containing first-, second- and third-row representative elements. J Chem Phys 144:204118–204126.  https://doi.org/10.1063/1.4952427 CrossRefGoogle Scholar
  10. 10.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can J Chem 70:612–630.  https://doi.org/10.1139/v92-085 CrossRefGoogle Scholar
  11. 11.
    Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81:6026–6033.  https://doi.org/10.1063/1.447604 CrossRefGoogle Scholar
  12. 12.
    Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776.  https://doi.org/10.1063/1.477422 CrossRefGoogle Scholar
  13. 13.
    Curtiss LA, Redfern PC, Raghavachari K (2011) Gn theory. Wiley Interdiscip Rev Comput Mol Sci 1:810–825.  https://doi.org/10.1002/wcms.59 CrossRefGoogle Scholar
  14. 14.
    Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) Erratum: “Implementation of pseudopotential in the G3 theory for molecules containing first-, second-, and non-transition third-row atoms” [J. Chem. Phys. 135, 034106 (2011)]. J Chem Phys 135:219901.  https://doi.org/10.1063/1.3666235 CrossRefGoogle Scholar
  15. 15.
    Leal RC, Custodio R (2019) G3(MP2)//B3-SBK: a revision of a composite theory for calculations of thermochemical properties including some non-transition elements beyond the fourth period. Comput Theor Chem.  https://doi.org/10.1016/j.comptc.2018.12.016 CrossRefGoogle Scholar
  16. 16.
    Silva CS, Custodio R (2018) Empirical corrections in the G3X and G3X(CCSD) theories combined with a compact effective pseudopotential. Theor Chem Acc.  https://doi.org/10.1007/s00214-018-2206-3 CrossRefGoogle Scholar
  17. 17.
    Hill TL (1987) An introduction to statistical thermodynamics. Dover Publications, New YorkGoogle Scholar
  18. 18.
    Callen HB (1985) Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Pople JA, Schlegel HB, Krishnan R et al (1981) Molecular orbital studies of vibrational frequencies. Int J Quantum Chem 20:269–278.  https://doi.org/10.1002/qua.560200829 CrossRefGoogle Scholar
  20. 20.
    Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513.  https://doi.org/10.1021/jp960976r CrossRefGoogle Scholar
  21. 21.
    Parthiban S, Martin JML (2001) Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J Chem Phys 114:6014–6029.  https://doi.org/10.1063/1.1356014 CrossRefGoogle Scholar
  22. 22.
    Martin JML, De Oliveira G (1999) Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J Chem Phys 111:1843–1856.  https://doi.org/10.1039/c4dt03554b CrossRefGoogle Scholar
  23. 23.
    Hase Y (1995) Theoretical study of the force field and vibrational assignments of acetamide and deuterated analogues. Spectrochim Acta Part A Mol Biomol Spectrosc 51:2561–2573.  https://doi.org/10.1016/0584-8539(95)01496-9 CrossRefGoogle Scholar
  24. 24.
    Hase Y (2000) Theoretical study of the force field and vibrational assignments of thioacetamide and its deuterated analogues. Spectrochim Acta Part A Mol Biomol Spectrosc 56:1035–1044.  https://doi.org/10.1016/S1386-1425(99)00201-2 CrossRefGoogle Scholar
  25. 25.
    Palafox MA (1999) Scaling factors for the prediction of the frequencies of the ring modes in benzene derivatives. J Phys Chem A 103:11366–11377.  https://doi.org/10.1021/jp990591j CrossRefGoogle Scholar
  26. 26.
    Rastogi VK, Palafox MA, Singhal S et al (2007) Geometrical parameters, vibrational wavenumbers, and relationships established with six difluorobenzonitriles. Int J Quantum Chem 107:1099–1114.  https://doi.org/10.1002/qua.21210 CrossRefGoogle Scholar
  27. 27.
    Gao LG, Zheng J, Fernández-Ramos A et al (2018) Kinetics of the methanol reaction with OH at interstellar, atmospheric, and combustion temperatures. J Am Chem Soc 140:2906–2918.  https://doi.org/10.1021/jacs.7b12773 CrossRefPubMedGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09 Revision D.01Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasBarão Geraldo, CampinasBrazil

Personalised recommendations