Advertisement

Integrating firefly algorithm with density functional theory for global optimization of Al42− clusters

  • Arka Mitra
  • Gourhari Jana
  • Prachi Agrawal
  • Shamik SuralEmail author
  • Pratim K. ChattarajEmail author
Regular Article
  • 51 Downloads

Abstract

The crux of quantum chemistry lies in the minimization of energy functional to obtain the optimized geometry of a molecule. This involves formulating the energy minimization task as a global optimization (GO) problem and using an appropriate algorithm for determining the best solution out of a number of feasible solutions. Several new and unconventional algorithms are proposed that augment the efforts toward GO of clusters of atoms using rigorous quantum chemical methods. Among these, swarm intelligence-based nature-inspired metaheuristic algorithms have particularly drawn considerable attention. However, it still has certain drawbacks. In this work, we propose the use of firefly algorithm (FA) in conjunction with density functional theory (DFT)-based calculations for solving the GO problem and establish its superioriority in performance over particle swarm optimization (PSO) through extensive computational studies. Specifically, we show how such a “FA + DFT” approach can be used for GO of Al42− clusters. Each possible structure in the three-dimensional search space is treated as a firefly particle. Starting with an initial pool of particles, newer sets of particles are generated using an evolutionary mechanism, thereby moving toward solutions with particles having “better” structures. This novel approach also enables the possibility of incorporating molecule specific domain knowledge. For example, knowing that Al42− clusters are planar, we can restrict the search space so that only planar structures are explored, thereby achieving faster convergence of the algorithm. As an extension of the current technique, an important correlation between energy stabilization and aromaticity is established.

Keywords

Aluminum cluster Energy minimization Firefly algorithm Particle swarm optimization Aromaticity 

Notes

Acknowledgments

PKC would like to thank DST, New Delhi, for the J. C. Bose National Fellowship. SS, AM, and PA thank CSE for the computational facilities. GJ thanks IIT, Kharagpur, for his fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article, financial, and/or otherwise.

References

  1. 1.
    Horst R, Pardalos PM (2013) Handbook of global optimization, vol 2. Springer, BerlinGoogle Scholar
  2. 2.
    Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41:6047–6056Google Scholar
  3. 3.
    Su C-T, Lee C-S (2003) Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans Power Deliv 18:1022–1027Google Scholar
  4. 4.
    Yang X-S, Press L (2010) Nature-inspired metaheuristic algorithms second editionGoogle Scholar
  5. 5.
    Abbasbandy S (2003) Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Appl Math Comput 145:887–893Google Scholar
  6. 6.
    Goldfeld SM, Quandt RE, Trotter HF (1966) Maximization by quadratic hill-climbing. Econom Soc 34:541–551Google Scholar
  7. 7.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313Google Scholar
  8. 8.
    Arora S, Singh S (2013) The firefly optimization algorithm: convergence analysis and parameter selection. Int J Comput Appl 69:48–52Google Scholar
  9. 9.
    Dorigo M, Birattari M (2011) Ant Colony Optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, BostonGoogle Scholar
  10. 10.
    Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature and biologically inspired computing (NaBIC). IEEE, pp 210–214Google Scholar
  11. 11.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6:182–197Google Scholar
  12. 12.
    Yuan G-N, Zhang L-N, Liu L-Q, Wang K (2014) Passengers’ evacuation in ships based on neighborhood particle swarm optimization. Math Probl EngGoogle Scholar
  13. 13.
    Bai Q (2010) Analysis of particle swarm optimization algorithm. Comput Inf Sci 3:180Google Scholar
  14. 14.
    Gao Y, Du W, Yan G (2015) Selectively-informed particle swarm optimization. Sci Rep 5:9295PubMedPubMedCentralGoogle Scholar
  15. 15.
    Du W-B, Gao Y, Liu C, Zheng Z, Wang Z (2015) Adequate is better: particle swarm optimization with limited-information. Appl Math Comput 268:832–838Google Scholar
  16. 16.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471Google Scholar
  17. 17.
    Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation, arXiv preprint arXiv:10031409
  18. 18.
    Wang H, Zhou X, Sun H, Yu X, Zhao J, Zhang H, Cui L (2017) Firefly algorithm with adaptive control parameters. Soft Comput 21:5091–5102Google Scholar
  19. 19.
    Marichelvam M, Geetha M (2014) Solving tri-objective multistage hybrid flow shop scheduling problems using a discrete firefly algorithm. Int J Intell Eng Inform 2:284–303Google Scholar
  20. 20.
    Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspired Comput 8:33–41Google Scholar
  21. 21.
    Fister I, Fister I Jr, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46Google Scholar
  22. 22.
    Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, pp 169–178Google Scholar
  23. 23.
    Fister I Jr, Perc M, Kamal SM, Fister I (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165Google Scholar
  24. 24.
    Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98Google Scholar
  25. 25.
    Yang X-S, He X (2013) Firefly algorithm: recent advances and applications. arXiv preprint arXiv:13083898
  26. 26.
    Yang X-S (2014) Swarm intelligence based algorithms: a critical analysis. Evol Intell 7:17–28Google Scholar
  27. 27.
    Arora S, Singh S (2013) A conceptual comparison of firefly algorithm, bat algorithm and cuckoo search. In: 2013 International conference on control, computing, communication and materials (ICCCCM), 2013. IEEE, pp 1–4Google Scholar
  28. 28.
    Khadwilard A, Chansombat S, Thepphakorn T, Thapatsuwan P, Chainate W, Pongcharoen P (2012) Application of firefly algorithm and its parameter setting for job shop scheduling. J Ind Technol 8:49–58Google Scholar
  29. 29.
    Jones RO (1993) Simulated annealing study of neutral and charged clusters: Aln and Gan. J Chem Phys 99:1194–1206Google Scholar
  30. 30.
    Drebov N, Ahlrichs R (2010) Structures of Aln, its anions and cations up to n = 34: a theoretical investigation. J Chem Phys 132:164703PubMedGoogle Scholar
  31. 31.
    Avendaño-Franco G, Romero AH (2016) Firefly algorithm for structural search. J Chem Theor Comput 12:3416–3428Google Scholar
  32. 32.
    Mitikiri P, Jana G, Sural S, Chattaraj PK, A machine learning technique toward generating minimum energy structures of small boron clusters. Int Quantum Chem e25672Google Scholar
  33. 33.
    Jana G, Mitra A, Pan S, Sural S, Chattaraj PK (2019) Modified particle swarm optimization algorithms for the generation of stable structures of carbon clusters, Cn (n = 3–6, 10). Front Chem 7:485PubMedPubMedCentralGoogle Scholar
  34. 34.
    Singh BJ (2014) Rsm: A key to optimize machining: multi-response optimization of CNC turning with Al-7020 alloy. Anchor Academic Publishing (aap_verlag)Google Scholar
  35. 35.
    Hihara LH, Adler RP, Latanision RM (2013) Environmental degradation of advanced and traditional engineering materials. CRC Press, AmsterdamGoogle Scholar
  36. 36.
    Ginter DS, Ginter ML, Innes KK (1964) The band spectrum of the Al-{2} molecule. Astrophys J 139:365Google Scholar
  37. 37.
    Stearns CA, Kohl FJ (1973) Mass spectrometric determination of the dissociation energies of gaseous Al2, AlSi and AlSiO. High Temp Sci 5:113–127Google Scholar
  38. 38.
    Howard J, Sutcliffe R, Tse J, Dahmane H, Mile B (1985) Electron spin resonance spectra of the aluminum trimer in hydrocarbon matrixes: a quartet 4A2 state. J Phys Chem 89:3595–3598Google Scholar
  39. 39.
    Cox D, Trevor D, Whetten R, Rohlfing E, Kaldor A (1986) Aluminum clusters: magnetic properties. J Chem Phys 84:4651–4656Google Scholar
  40. 40.
    Hanley L, Ruatta SA, Anderson SL (1987) Collision-induced dissociation of aluminum cluster ions: fragmentation patterns, bond energies, and structures for Al2 +–Al7 +. J Chem Phys 87:260–268Google Scholar
  41. 41.
    Jena P (2013) Physics and chemistry of small clusters, vol 158. Springer, BerlinGoogle Scholar
  42. 42.
    Fuke K, Nonose S, Kikuchi N, Kaya K (1988) Reaction of aluminum clusters, Aln (n = 7–24), with oxygen and ammonia. Chem Phys Lett 147:479–483Google Scholar
  43. 43.
    Cai M, Dzugan T, Bondybey V (1989) Fluorescence studies of laser vaporized aluminum: evidence for a 3Πu ground state of aluminum dimer. Chem Phys Lett 155:430–436Google Scholar
  44. 44.
    Hamrick Y, Van Zee R, Weltner W Jr (1992) Electron-spin resonance and ground states of the boron and aluminum trimers. J Chem Phys 96:1767–1775Google Scholar
  45. 45.
    Ganteför G, Eberhardt W (1994) Shell structure and s–p hybridization in small aluminum clusters. Chem Phys Lett 217:600–604Google Scholar
  46. 46.
    Baguenard B, Pellarin M, Lermé J, Vialle J, Broyer M (1994) Competition between atomic shell and electronic shell structures in aluminum clusters. J Chem Phys 100:754–755Google Scholar
  47. 47.
    Cha CY, Ganteför G, Eberhardt W (1994) The development of the 3 p and 4 p valence band of small aluminum and gallium clusters. J Chem Phys 100:995–1010Google Scholar
  48. 48.
    Salahub D, Messmer R (1977) Molecular-orbital study of aluminum clusters containing up to 43 atoms. Phys Rev B 16:2526Google Scholar
  49. 49.
    Sabelli NH, Benedek R, Gilbert T (1979) Ground-state potential curves for Al2 and Al2 6+ in the repulsive region. Phys Rev A 20:677Google Scholar
  50. 50.
    Schwartz ME, Quinn CM (1981) Studies of clusters using self-consistent field molecular orbital theory and a combination of all-electron real atoms and valence-electron model atoms. Surf Sci 106:258–264Google Scholar
  51. 51.
    Lamson S, Messmer R (1983) A local density functional—LCAO method with effective potentials for obtaining the electronic structure of molecules and clusters. Chem Phys Lett 98:72–76Google Scholar
  52. 52.
    Pacchioni G (1983) Applicability of a pseudopotential CI method to the investigation of ground and excited states of molecular systems: NaCO, Li2H, Al2 and AlH. Theor Chim Acta 62:461–475Google Scholar
  53. 53.
    Pacchioni G, Plavšić D, Koutecký J (1983) Chemical bonding and electronic structure of small homonuclear clusters of elements of groups IA, IIA, IIIA and IVA. Ber Bunsenges Phys Chem 87:503–512Google Scholar
  54. 54.
    Basch H, Stevens W, Krauss M (1984) Electronic states of Al2. Chem Phys Lett 109:212–216Google Scholar
  55. 55.
    Upton T (1986) Low-lying valence electronic states of the aluminum dimer. J Phys Chem 90:754–759Google Scholar
  56. 56.
    Upton T (1986) Structural, electronic, and chemisorption properties of small aluminum clusters. Phys Rev Lett 56:2168PubMedGoogle Scholar
  57. 57.
    Upton T (1987) A perturbed electron droplet model for the electronic structure of small aluminum clusters. J Chem Phys 86:7054–7064Google Scholar
  58. 58.
    Bauschlicher CW Jr, Partridge H, Langhoff SR, Taylor PR, Walch SP (1987) Accurate abinitio calculations which demonstrate a 3Πu ground state for Al2. J Chem Phys 86:7007–7012Google Scholar
  59. 59.
    Bauschlicher CW Jr, Pettersson LG (1987) Small Al clusters. I: the effect of basis set and correlation on the geometry of small Al clusters. J Chem Phys 87:2198–2204Google Scholar
  60. 60.
    Elsasser C, Fahnle M, Brandt E, Bohm M (1987) Energetics of Al13, Cu13 and Ni13 clusters of various symmetries. J Phys F: Metal Phys 17:L301Google Scholar
  61. 61.
    Pettersson LG, Bauschlicher CW Jr, Halicioglu T (1987) Small Al clusters. II: structure and binding in Aln (n = 2–6, 13). J Chem Phys 87:2205–2213Google Scholar
  62. 62.
    Sunil K, Jordan K (1988) Determination of the energies and spectroscopic constants of the low-lying electronic states of aluminum dimers (Al2, Al2 +, and Al2 ). J Phys Chem 92:2774–2781Google Scholar
  63. 63.
    Ray A, Rao B (1997) Geometries and energies of small aluminium clusters in fcc symmetry. J Phys: Condens Matter 9:2859Google Scholar
  64. 64.
    Li X, Wu H, Wang X-B, Wang L-S (1998) s-p hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopy study. Phys Rev Lett 81:1909Google Scholar
  65. 65.
    Johnston RL, Fang JY (1992) An empirical many-body potential-energy function for aluminum: application to solid phases and microclusters. J Chem Phys 97:7809–7821Google Scholar
  66. 66.
    Martinez A, Vela A (1994) Stability of charged aluminum clusters. Phys Rev B 49:17464Google Scholar
  67. 67.
    Martínez A, Vela A, Salahub DR, Calaminici P, Russo N (1994) Aluminum clusters: a comparison between all electron and model core potential calculations. J Chem Phys 101:10677–10685Google Scholar
  68. 68.
    Calaminici P, Russo N, Toscano M (1995) Gaussian density-functional study for small neutral (Aln), positive (Aln+) and negative (Aln) aluminium clusters (n = 2–5). Zeitschrift für Physik D Atoms Mol Clust 33:281–288Google Scholar
  69. 69.
    Greeff C, Lester W Jr, Hammond B (1996) Electronic states of Al and Al2 using quantum Monte Carlo with an effective core potential. J Chem Phys 104:1973–1978Google Scholar
  70. 70.
    Hofmann AWV (1857) I. On insolinic acid. Proceedings of the Royal Society of London, pp 1–3Google Scholar
  71. 71.
    Auvert G (2014) The even-odd rule on single covalent-bonded structural formulas as a modification of classical structural formulas of multiple-bonded ions and molecules. Open J Phys Chem 4:173Google Scholar
  72. 72.
    Crocker EC (1922) Application of the octet theory to single-ring aromatic compounds. J Am Chem Soc 44:1618–1630Google Scholar
  73. 73.
    Armit JW, Robinson R (1925) CCXI.—Polynuclear heterocyclic aromatic types. Part II. Some anhydronium bases. J Chem Soc Trans 127:1604–1618Google Scholar
  74. 74.
    Schleyer PVR (2001) Introduction: aromaticity (Guest Ed.). Chem Rev, 101Google Scholar
  75. 75.
    Cyvin SJ, Gutman I (2013) Kekulé structures in benzenoid hydrocarbons, vol 46. Springer, BerlinGoogle Scholar
  76. 76.
    Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity. Wiley, New YorkGoogle Scholar
  77. 77.
    Balaban AT, Oniciu DC, Katritzky AR (2004) Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev 104:2777–2812PubMedGoogle Scholar
  78. 78.
    Ashe AJ III (1971) Phosphabenzene and arsabenzene. J Am Chem Soc 93:3293–3295Google Scholar
  79. 79.
    Elliott GP, Roper WR, Waters JM (1982) Metallacyclohexatrienes or ‘metallabenzenes’. Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os (CSCHCHCHCH)(CO)(PPh3)2]. J Chem Soc Chem Commun, pp 811–813Google Scholar
  80. 80.
    Li X, Kuznetsov AE, Zhang H-F, Boldyrev AI, Wang L-S (2001) Observation of all-metal aromatic molecules. Science 291:859–861PubMedGoogle Scholar
  81. 81.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kealy T, Pauson P (1951) A new type of organo-iron compound. Nature 168(4285):1039Google Scholar
  83. 83.
    Wilkinson G, Rosenblum M, Whiting M, Woodward R (1952) The structure of iron bis-cyclopentadienyl. J Am Chem Soc 74:2125–2126Google Scholar
  84. 84.
    Eiland PF, Pepinsky R (1952) X-ray examination of iron biscyclopentadienyl. J Am Chem Soc 74:4971Google Scholar
  85. 85.
    Coriani S, Haaland A, Helgaker T, Jørgensen P (2006) The equilibrium structure of ferrocene. Chem Phys Chem 7:245–249PubMedGoogle Scholar
  86. 86.
    Kudinov A, Rybinskaya M (1999) New triple-decker complexes prepared by the stacking reactions of cationic metallofragments with sandwich compounds. Russ Chem Bull 48:1615–1621Google Scholar
  87. 87.
    Kudinov AR, Loginov DA, Starikova ZA, Petrovskii PV (2002) Dicationic triple-decker complexes with a bridging boratabenzene ligand. J Organomet Chem 649:136–140Google Scholar
  88. 88.
    Beck V, O’Hare D (2004) Triple-decker transition metal complexes bridged by a single carbocyclic ring. J Organomet Chem 689:3920–3938Google Scholar
  89. 89.
    Qian-shu L, Heng-tai Y, Au-chin T (1986) Electronic structures of multi-decker transition metal sandwich complexes. Theor Chim Acta 70:379–389Google Scholar
  90. 90.
    Malar EP (2005) Density functional theory analysis of some triple-decker sandwich complexes of iron containing cyclo-P 5 and cyclo-As 5 ligands. Theor Chem Acc 114:213–221Google Scholar
  91. 91.
    Kruszewski J, Krygowski T (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842Google Scholar
  92. 92.
    Krygowski TM (1993) Crystallographic studies of inter-and intramolecular interactions reflected in aromatic character of. pi.-electron systems. J Chem Inf Comput Sci 33:70–78Google Scholar
  93. 93.
    Evans M, Warhurst E (1938) The activation energy of diene association reactions. J Chem Soc, Faraday Trans 34:614–624Google Scholar
  94. 94.
    Calvin M, Wilson K (1945) Stability of chelate compounds. J Am Chem Soc 67:2003–2007Google Scholar
  95. 95.
    Masui H (2001) Metalloaromaticity. Coordin Chem Rev 219:957–992Google Scholar
  96. 96.
    Winstein S (1959) Homo-aromatic structures. J Am Chem Soc 81:6524–6525Google Scholar
  97. 97.
    Williams RV (2001) Homoaromaticity. Chem Rev 101:1185–1204PubMedPubMedCentralGoogle Scholar
  98. 98.
    Heilbronner E (1966) Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett 1964:1923Google Scholar
  99. 99.
    Breslow R (1965) Aromatic character. Chem Eng News 43:90–100Google Scholar
  100. 100.
    Breslow R, Brown J, Gajewski JJ (1967) Antiaromaticity of cyclopropenyl anions. J Am Chem Soc 89:4383–4390Google Scholar
  101. 101.
    Breslow R (1973) Antiaromaticity. Acc Chem Res 6:393–398Google Scholar
  102. 102.
    Osawa E (1970) Superaromaticity. Kagaku 25:854–863Google Scholar
  103. 103.
    Curl RF, Smalley RE, Kroto HW, O’Brien S, Heath JR (2001) How the news that we were not the first to conceive of soccer ball C_ (60) got to us. J Mol Graph Model 19:185–186PubMedGoogle Scholar
  104. 104.
    Baird NC (1972) Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3. pi. pi.* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948Google Scholar
  105. 105.
    Gogonea V, PvR Schleyer, Schreiner PR (1998) Consequences of triplet aromaticity in 4nπ-electron annulenes: calculation of magnetic shieldings for open-shell species. Angew Chem 37:1945–1948Google Scholar
  106. 106.
    Aihara J (1978) Three-dimensional aromaticity of polyhedral boranes. J Am Chem Soc 100:3339–3342Google Scholar
  107. 107.
    Dewar MJ (1979) σ-Conjugation and σ-aromaticity. Bull des Soc Chimiques Belges 88:957–967Google Scholar
  108. 108.
    Dewar M, McKee M (1980) Aspects of cyclic conjugation. Pure Appl Chem 52:1431–1441Google Scholar
  109. 109.
    Dewar MJ (1984) Chemical implications of. sigma. conjugation. J Am Chem Soc 106:669–682Google Scholar
  110. 110.
    Jemmis ED, PvR Schleyer (1982) Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons. J Am Chem Soc 104:4781–4788Google Scholar
  111. 111.
    Hiberty PC, Shaik SS, Lefour JM, Ohanessian G (1985) Is the delocalized. pi. system of benzene a stable electronic system? J Org Chem 50:4657–4659Google Scholar
  112. 112.
    Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) Is delocalization a driving force in chemistry? Benzene, allyl radical, cyclobutadiene, and their isoelectronic species. J Am Chem Soc 109:363–374Google Scholar
  113. 113.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162Google Scholar
  114. 114.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56Google Scholar
  115. 115.
    Fokin AA, Jiao H, PvR Schleyer (1998) From Dodecahedrapentaene to the “[n] Trannulenes”: a new in-plane aromatic family. J Am Chem Soc 120:9364–9365Google Scholar
  116. 116.
    Wei XW, Darwish AD, Boltalina OV, Hitchcock PB, Street JM, Taylor R (2001) The remarkable stable emerald green C60F15 [CBr(CO2Et)2]3: the first [60] fullerene that is also the first [18] trannulene. Angew Chem 40:2989–2992Google Scholar
  117. 117.
    Troshin PA, Lyubovskaya RN, Ioffe IN, Shustova NB, Kemnitz E, Troyanov SI (2005) Synthesis and structure of the highly chlorinated [60] fullerene C60Cl30 with a drum-shaped carbon cage. Angew Chem 44:234–237Google Scholar
  118. 118.
    Canteenwala T, Padmawar PA, Chiang LY (2005) Intense near-infrared optical absorbing emerald green [60] fullerenes. J Am Chem Soc 127:26–27PubMedGoogle Scholar
  119. 119.
    Pauling L, Sherman J (1933) The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures. J Chem Phys 1:606–617Google Scholar
  120. 120.
    Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J Am Chem Soc 92:4796–4801Google Scholar
  121. 121.
    PvR Schleyer, Pühlhofer F (2002) Recommendations for the evaluation of aromatic stabilization energies. Org Lett 4:2873–2876Google Scholar
  122. 122.
    Julg A, François P (1967) Recherches sur la géométrie de quelques hydrocarbures non-alternants: son influence sur les énergies de transition, une nouvelle définition de l’aromaticité. Theor Chim Acta 8:249–259Google Scholar
  123. 123.
    Bergmann ED, Pullman B (1971) Aromaticity, pseudo-aromaticity, anti-aromaticity: proceedings of an international symposium held in Jerusalem, 31 March–3 April, 1970, vol 3. Academic PressGoogle Scholar
  124. 124.
    Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 114:6383–6422PubMedGoogle Scholar
  125. 125.
    Jug K, Köster AM (1991) Aromaticity as a multi-dimensional phenomenon. J Phys Org Chem 4:163–169Google Scholar
  126. 126.
    Matito E, Duran M, Sola M (2005) The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. J Chem Phys 122:014109Google Scholar
  127. 127.
    Bird C (1986) The application of a new aromaticity index to six-membered ring heterocycles. Tetrahedron 42:89–92Google Scholar
  128. 128.
    Bird CW (1992) Heteroaromaticity, 5, a unified aromaticity index. Tetrahedron 48:335–340Google Scholar
  129. 129.
    Bird CW (1996) The relationship of classical and magnetic criteria of aromaticity. Tetrahedron 52:9945–9952Google Scholar
  130. 130.
    Sundholm D, Fliegl H, Berger RJ (2016) Calculations of magnetically induced current densities: theory and applications. Wiley Interdiscip Rev: Comput Mol Sci 6:639–678Google Scholar
  131. 131.
    Giambiagi M, de Giambiagi MS, dos Santos Silva CD, de Figueiredo AP (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2:3381–3392Google Scholar
  132. 132.
    Howard S, Krygowski T (1997) Benzenoid hydrocarbon aromaticity in terms of charge density descriptors. Can J Chem 75:1174–1181Google Scholar
  133. 133.
    Matta CF, Hernández-Trujillo J (2003) Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. J Phys Chem A 107:7496–7504Google Scholar
  134. 134.
    Mandado M, González-Moa MJ, Mosquera RA (2007) QTAIM n-center delocalization indices as descriptors of aromaticity in mono and poly heterocycles. J Comput Chem 28:127–136PubMedGoogle Scholar
  135. 135.
    Poater J, Fradera X, Duran M, Sola M (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J 9:400–406PubMedGoogle Scholar
  136. 136.
    Juse J, Sundholm D (1999) Ab initio determination of the induced ring current in aromatic molecules. Phys Chem Chem Phys 1:3429–3435Google Scholar
  137. 137.
    Imoto H, Fujii T, Tanaka S, Yamamoto S, Mitsuishi M, Yumura T, Naka K (2018) As-heteropentacenes: an experimental and computational study on a novel class of heteroacenes. Org Lett 20:5952–5955PubMedGoogle Scholar
  138. 138.
    Herges R, Geuenich D (2001) Delocalization of electrons in molecules. J Phys Chem A 105:3214–3220Google Scholar
  139. 139.
    PvR Schleyer, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318Google Scholar
  140. 140.
    Solà i Puig M (2017) Why aromaticity is a suspicious concept? Why? Front Chem 5:22Google Scholar
  141. 141.
    Kekule F (1865) Studies on aromatic compounds. Chemie Und Pharmacial Leipzig 137:129–196Google Scholar
  142. 142.
    Moran D, Stahl F, Bettinger HF, Schaefer HF, PvR Schleyer (2003) Towards graphite: magnetic properties of large polybenzenoid hydrocarbons. J Am Chem Soc 125:6746–6752PubMedGoogle Scholar
  143. 143.
    Ruiz-Morales Y (2004) The agreement between Clar structures and nucleus-independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-rule. J Phys Chem A 108:10873–10896Google Scholar
  144. 144.
    Boldyrev AI, Wang L-S (2005) All-metal aromaticity and antiaromaticity. Chem Rev 105:3716–3757PubMedGoogle Scholar
  145. 145.
    Li X, Zhang HF, Wang LS, Kuznetsov AE, Cannon NA, Boldyrev AI (2001) Experimental and theoretical observations of aromaticity in heterocyclic XAl3 − (X = Si, Ge, Sn, Pb) systems. Angew Chem 40:1867–1870Google Scholar
  146. 146.
    Kuznetsov AE, Boldyrev AI, Li X, Wang L-S (2001) On the aromaticity of square planar Ga42-and In42-in gaseous NaGa4-and NaIn4-clusters. J Am Chem Soc 123:8825–8831PubMedGoogle Scholar
  147. 147.
    Boldyrev AI, Kuznetsov AE (2002) On the resonance energy in new all-metal aromatic molecules. Inorg Chem 41:532–537PubMedGoogle Scholar
  148. 148.
    Kuznetsov AE, Boldyrev AI (2002) Theoretical evidence of aromaticity in X3 (X = B, Al, Ga) species. Struct Chem 13:141–148Google Scholar
  149. 149.
    Kuznetsov AE, Boldyrev AI, Zhai H-J, Li X, Wang L-S (2002) Al6 2−–fusion of two aromatic Al3 units. a combined photoelectron spectroscopy and ab initio study of M+ [Al6 2−] (M = Li, Na, K, Cu, and Au). J Am Chem Soc 124:11791–11801PubMedGoogle Scholar
  150. 150.
    Gomez H, Taylor TR, Neumark DM (2001) Anion photoelectron spectroscopy of aluminum phosphide clusters. J Phys Chem A 105:6886–6893Google Scholar
  151. 151.
    Li X-W, Pennington WT, Robinson GH (1995) Metallic system with aromatic character. synthesis and molecular structure of Na2[[(2, 4, 6-Me3C6H2)2C6H3]Ga]3 the first cyclogallane. J Am Chem Soc 117:7578–7579Google Scholar
  152. 152.
    Xie Y, Schreiner PR, Schaefer HF, Li X-W, Robinson GH (1996) Are cyclogallenes [M2 (GaH) 3](M = Li, Na, K) aromatic? J Am Chem Soc 118:10635–10639Google Scholar
  153. 153.
    Nyulászi L (2001) Aromaticity of phosphorus heterocycles. Chem Rev 101:1229–1246PubMedGoogle Scholar
  154. 154.
    Kuznetsov AE, Birch KA, Boldyrev AI, Li X, Zhai H-J, Wang L-S (2003) All-metal antiaromatic molecule: rectangular Al4 4− in the Li3Al4 Anion. Science 300:622–625PubMedGoogle Scholar
  155. 155.
    Ritter SK (2003) Deciphering metal antiaromaticity. Chem Eng News 81:23Google Scholar
  156. 156.
    Calais JL (1993) Density‐functional theory of atoms and molecules. RG Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price£ 45.00. Int J Quantum Chem 47:101–101Google Scholar
  157. 157.
    Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M A, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralt, JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CTGoogle Scholar
  158. 158.
    Becke AD (1992) Density functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160Google Scholar
  159. 159.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785Google Scholar
  160. 160.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for gaussian basis sets. J Chem Phys 80:3265–3269Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electronics and Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Chemistry and Centre for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia
  4. 4.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  5. 5.Department of ChemistryIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations