Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conceptual density functional theory: status, prospects, issues

  • 246 Accesses

Abstract

This paper results from a round table discussion at the CCTC2018 Conference in Changsha City, Hunan, China, in December 2018. It presents a report on the status, prospects, and issues of conceptual density functional theory (CDFT). After a short exposition on the history of CDFT, its fundamentals, philosophy, and successes are highlighted. Then ten issues for reflection on the future of conceptual DFT are formulated and discussed, ending with one or more summarizing statements on the present status of various concepts/principles/practices and proposed directions for future research. The issues include the further analysis of the energy functional, E[N,v], extended to include effects of temperature, solvent, and mechanical forces, basic requirements for physically acceptable response functions as reactivity descriptors, the use of the grand canonical ensemble, the relevance of CDFT for chemical kinetics and thermodynamics, the domain of validity of CDFT-based principles, the combination of CDFT with reaction path calculations, information-theoretic descriptors, and the treatment of excited states and time dependence. The final issue advocates the transition of CDFT from an interpretative to a predictive mode; we believe this is of utmost importance for promoting CDFT as a viable alternative to wave function-based methods for the practicing chemist, a separate issue treated in the final section.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

  2. 2.

    Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701–728

  3. 3.

    Chermette H (1999) J Comput Chem 20:129–154

  4. 4.

    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

  5. 5.

    Ayers PW, Anderson J, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534

  6. 6.

    Gázquez JL (2008) J Mex Chem Soc 52:3–10

  7. 7.

    Liu SB (2009) Acta Phys Chem Sin 25:590–600

  8. 8.

    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042

  9. 9.

    Geerlings P, Ayers PW, Toro-Labbé A, Chattaraj PK, De Proft F (2012) Acc Chem Res 55:683–695

  10. 10.

    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

  11. 11.

    Chattaraj PK, Roy DR (2007) Chem Rev 107:PR46–PR74

  12. 12.

    Chattaraj PK, Giri S, Duley S (2011) Chem Rev 11:PR43–PR75

  13. 13.

    Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989–5008

  14. 14.

    Geerlings P, Fias S, Stuyver T, Ayers P, Balawender R, De Proft F (2019) In: Glossman Mitnik D (ed) Density functional theory. IntechOpen, London

  15. 15.

    Toro-Labbé A (ed) (2006) Theoretical aspects of chemical reactivity. Elsevier, Amsterdam

  16. 16.

    Chattaraj PK (ed) (2009) Chemical reactivity theory, a density functional view. CRC Press, Boca Raton

  17. 17.

    Glossman-Mitnik D (ed) (2019) Density functional theory. IntechOpen, London

  18. 18.

    Liu S, Zhang Z (2018) Acta Phys Chem Sin 34:563–566 (Preface of the Special Issue “Chemical Concepts from Density Functional Theory”)

  19. 19.

    Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

  20. 20.

    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

  21. 21.

    Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551

  22. 22.

    Mulliken RS (1934) J Chem Phys 2:782–793

  23. 23.

    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

  24. 24.

    Pearson RG (1963) J Am Chem Soc 85:3533–3539

  25. 25.

    Pearson RG (1997) Chemical hardness: applications from molecules to the solid state. Wiley-VCH Verlag Weinheim, Germany

  26. 26.

    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

  27. 27.

    Fukui K, Yonezawa Y, Shingu H (1952) J Chem Phys 20:722–725

  28. 28.

    Fukui K (1975) Theory of orientation and stereoselection. Springer Verlag, Berlin

  29. 29.

    Woodward RB, Hoffmann RW (1971) The conservation of orbital symmetry. Verlag Chemie, Weinheim

  30. 30.

    Liu S, Parr RG (1997) J Chem Phys 106:5578–5586

  31. 31.

    Sanderson RT (1951) Science 114:670–672

  32. 32.

    Sanderson RT (1976) Chemical bonds and bond energies. Academic Press, New York

  33. 33.

    Sanderson RT (1983) Polar covalence. Academic Press, New York

  34. 34.

    Pearson RG (1987) J Chem Educ 64:561–567

  35. 35.

    Pearson RG (1993) Acc Chem Res 26:250–255

  36. 36.

    Pearson RG (1997) In: Chemical hardness: applications from molecules to solids. Wiley VCH Verlag, Weinheim (Chapter 1)

  37. 37.

    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti L, Macchi P (eds) Modern density analysis. Springer Verlag, Dordrecht (Chapter 21)

  38. 38.

    De Proft F, Ayers PW, Geerlings P (2014) In: Frenking G, Shaik S (eds) Fundamental aspects of chemical bonding. Wiley, New York (Chapter 4)

  39. 39.

    Ayers PW, Fias S, Heidar Zadeh F (2018) Comput Theor Chem 1142:81–87

  40. 40.

    Mulliken RS (1965) J Chem Phys 43:S2

  41. 41.

    Hückel E (1931) Physik Z 70:204–286

  42. 42.

    Hückel E (1931) Physik Z 72:310–337

  43. 43.

    Hückel E (1932) Physik Z 76:628–648

  44. 44.

    Hückel E (1933) Physik Z 83:632–668

  45. 45.

    For an authoritative account see Streitwieser A (1961) Molecular orbital theory for organic chemists. Wiley, New York

  46. 46.

    De Proft F, Ayers PW, Geerlings P (2006) J Chem Phys 125:214101

  47. 47.

    Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240–8247

  48. 48.

    De Proft F, Chattaraj PK, Ayers PW, Torrent-Sucarrat M, Elango M, Subramanian V, Giri S, Geerlings P (2008) J Chem Theor Comput 4:595–602

  49. 49.

    Jaque P, Correa JV, De Proft F, Toro-Labbé A, Geerlings P (2010) Can J Chem 88:858–865

  50. 50.

    Sablon N, De Proft F, Geerlings P (2009) Croat Chem Acta 82:157–164

  51. 51.

    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691–1694

  52. 52.

    Mori-Sanchez P, Cohen AJ, Yang WT (2009) Phys Rev Lett 102:066403

  53. 53.

    Cohen AJ, Mori-Sanchez P, Yang WT (2012) Chem Rev 112:289–320

  54. 54.

    Yang W, Cohen AJ, De Proft F, Geerlings P (2012) J Chem Phys 136:144110

  55. 55.

    Peng D, Yang W (2013) J Chem Phys 138:184108

  56. 56.

    Heider Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PW (2016) J Chem Theor Comput 12:5777–5787

  57. 57.

    Zhang YK, Yang WT (2008) Theor Chem Acc 103:346–348

  58. 58.

    Miranda-Quintana RA, Ayers P (2016) Phys Chem Chem Phys 18:15070–15080

  59. 59.

    Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2015) J Chem Phys 143:244117

  60. 60.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2015) J Chem Phys 143:154103

  61. 61.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2017) J Chem Phys 147:0741131

  62. 62.

    Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2017) J Chem Phys 147:094105 (CHECK 09)

  63. 63.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2018) J Chem Theor Comput 14:597–606

  64. 64.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2018) Acta Phys Chim Sin 34:683–691

  65. 65.

    Gázquez JL, Franco-Perez M, Ayers PW, Vela A (2019) Int J Quantum Chem 119:e25797

  66. 66.

    Kvaal S, Ekström U, Teale AM, Helgaker T (2014) J Chem Phys 140:18A518

  67. 67.

    Geerlings P, Boisdenghien Z, De Proft F, Fias S (2016) Theor Chem Acc 135:213

  68. 68.

    Lieb EH (1983) Int J Quantum Chem 24:243–277

  69. 69.

    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212

  70. 70.

    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346

  71. 71.

    Ayers PW, De Proft F, Borgoo A, Geerlings P (2007) J Chem Phys 126:224107

  72. 72.

    Sablon N, De Proft F, Ayers PW, Geerlings P (2007) J Chem Phys 126:224108

  73. 73.

    Sablon N, De Proft F, Ayers PW, Geerlings P (2010) J Chem Theor Comput 6:3671–3680

  74. 74.

    Sablon N, De Proft F, Geerlings P (2010) J Phys Chem Lett 1:1228–1234

  75. 75.

    Boisdenghien Z, Van Alsenoy C, De Proft F, Geerlings P (2013) J Chem Theor Comput 9:1007–1015

  76. 76.

    Fias S, Geerlings P, Ayers PW, De Proft F (2013) Phys Chem Chem Phys 15:2882–2889

  77. 77.

    Boisdenghien Z, Fias S, Van Alsenoy C, De Proft F, Geerlings P (2014) Phys Chem Chem Phys 16:14614–14624

  78. 78.

    Fias S, Boisdenghien Z, De Proft F, Geerlings P (2014) J Chem Phys 141:184107

  79. 79.

    Boisdenghien Z, Fias S, Da Pieve F, De Proft F, Geerlings P (2015) Mol Phys 113:1890–1899

  80. 80.

    Stuyver T, Fias S, De Proft F, Fowler PW, Geerlings P (2015) J Chem Phys 142:004103

  81. 81.

    Stuyver T, Fias S, De Proft F, Geerlings P (2015) J Phys Chem C 119:26390–26400

  82. 82.

    Cardenas C, Ayers PW, Cedillo A (2011) J Chem Phys 134:174103

  83. 83.

    Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2013) J Chem Theor Comput 9:4779–4788

  84. 84.

    Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2014) J Chem Theor Comput 10:202–210

  85. 85.

    Torrent-Sucarrat M, Luis JM, Duran M, Toro-Labbé A, Sola M (2003) J Chem Phys 119:9393–9399

  86. 86.

    Cohen MH, Ganduglia-Pirovano MV, Kudrnovsky J (1994) J Chem Phys 101:8988–8997

  87. 87.

    Cohen MH, Ganduglia-Pirovano MV, Kudrnovsky J (1995) J Chem Phys 103:3543–3551

  88. 88.

    Baekelandt BG (1996) J Chem Phys 105:4664–4667

  89. 89.

    Cauët E, Bogatko S, Liévin J, De Proft F, Geerlings P (2013) J Phys Chem B 117:9669–9676

  90. 90.

    Politzer P, Parr RG (1974) J Chem Phys 61:4258–4262

  91. 91.

    Von Lilienfeld OA, Tuckerman ME (2006) J Chem Phys 125:154104

  92. 92.

    Von Lilienfeld OA, Tuckerman ME (2007) J Chem Theor Comput 3:1083–1090

  93. 93.

    Von Lilienfeld OA (2009) J Chem Phys 131:164102

  94. 94.

    Von Lilienfeld OA (2013) Int J Quantum Chem 113:1676–1689

  95. 95.

    Fias S, Chang KYS, Von Lilienfeld OA (2019) J Phys Chem Lett 10:30–39

  96. 96.

    Lesiuk M, Balawender R, Zachara J (2012) J Chem Phys 136:034104

  97. 97.

    Balawender R, Welearegay M, Lesiuk M, De Proft F, Geerlings P (2013) J Chem Theor Comput 9:5327–5340

  98. 98.

    Balawender R, Lesiuk M, De Proft F, Geerlings P (2018) J Chem Theor Comput 14:1154–1168

  99. 99.

    Balawender R, Holas A, De Proft F, Van Alsenoy C, Geerlings P (2018) In: Anglilella GGN, Amovilli C (eds) Many body approaches at different scales. Springer, Cham (Chapter 2)

  100. 100.

    Balawender R, Lesiuk M, Van Alsenoy C, De Proft F, Geerlings P (2019) Phys Chem Chem Phys 21:23865–23879

  101. 101.

    Cardenas C, Rabi N, Ayers PW, Morell C, Jamarillo P, Fuentealba P (2009) J Phys Chem A 113:8660–8667

  102. 102.

    Kohn W (1996) Phys Rev Lett 76:3168–3171

  103. 103.

    Prodan E, Kohn W (2005) Proc Natl Acad Sci (USA) 102:11635–11638

  104. 104.

    Fias S, Heidar Zadeh F, Geerlings P, Ayers PW (2017) Proc Natl Acad Sci (USA) 114:11633–11638

  105. 105.

    Cardenas C, Ayers PW (2013) Phys Chem Chem Phys 15:13959–13968

  106. 106.

    Pearson RG, Chattaraj PK (2008) Chemtracts-Inorg Chem 21:1–7

  107. 107.

    Saha R, Pan S, Chattaraj PK (2016) Molecules 21:1477

  108. 108.

    Pan S, Sola M, Chattaraj PK (2013) J Phys Chem A 117:1843–1852

  109. 109.

    Chamorro E, Chattaraj PK, Fuentealba P (2003) J Phys Chem A 107:7068–7072

  110. 110.

    Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Theor Chem Acc 113:257–266

  111. 111.

    Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) J Chem Phys 147:124103

  112. 112.

    Gálvan M, Gázquez JL, Vela A (1986) J Chem Phys 85:2337–2338

  113. 113.

    Gálvan M, Vela A, Gázquez JL (1988) J Phys Chem 92:6470–6474

  114. 114.

    Ghanty TK, Ghosh SK (1994) J Am Chem Soc 116:3943–3948

  115. 115.

    Chamorro E, Pérez P (2005) J Chem Phys 123:114107

  116. 116.

    Chamorro E, De Proft F, Geerlings P (2005) J Chem Phys 123:154104

  117. 117.

    Chamorro E, Pérez P, De Proft F, Geerlings P (2006) J Chem Phys 124:044105

  118. 118.

    Pérez P, Chamorro E, Ayers PW (2008) J Chem Phys 128:204108

  119. 119.

    Pinter B, De Proft F, Van Speybroeck V, Hemelsoet K, Waroquier M, Chamorro E, Veszpremi T, Geerlings P (2007) J Org Chem 72:348–356

  120. 120.

    Chamorro E, Perez P, Duque M, De Proft F, Geerlings P (2008) J Chem Phys 129:064117

  121. 121.

    Gal T, Ayers PW, De Proft F, Geerlings P (2009) J Chem Phys 131:154114

  122. 122.

    De Proft F, Chamorro E, Pererz P, Duque M, De Vleeschouwer F, Geerlings P (2009) Chem Modell 6:1–49

  123. 123.

    Alcoba DR, Lain L, Torre A, Ona OB, Chamorro E (2013) Phys Chem Chem Phys 15:9594–9604

  124. 124.

    Bettens T, Alonso M, Geerlings P, De Proft F (2019) Phys Chem Chem Phys 21:7378–7388

  125. 125.

    Bettens T, Alonso M, Geerlings P, De Proft F (2019) Chem Sci. https://doi.org/10.1039/C9SC04507D

  126. 126.

    Toro-Labbé A (1999) J Phys Chem A 103:4398–4403

  127. 127.

    Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2007) Mol Phys 105:2619–2625

  128. 128.

    Toro-Labbé A, Gutiérrez-Oliva S, Politzer P, Murray JS (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton (Chapter 21)

  129. 129.

    For a comprehensive review see Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS (2012) Adv Quantum Chem 64:189–209

  130. 130.

    Echegaray E, Toro-Labbé A (2008) J Phys Chem A 112:11801–11807

  131. 131.

    Villegas-Escobar N, Vogt Geisse S, Gutiérrez-Oliva S, Toro-Labbé A (2016) Theor Chem Acc 135:191

  132. 132.

    Morell C, Tognetti V, Bignon E, Dumont E, Hernanadez-Haro N, Herrera B, Grand A, Gutierrez-Oliva S, Joubert L, Toro-Labbé A, Chermette H (2015) Theor Chem Acc 134:133

  133. 133.

    Morell C, Labet V, Grand A, Ayers PW, De Proft F, Geerlings P, Chermette H (2009) J Chem Theor Comput 9:2274–2283

  134. 134.

    Sears SB, Parr RG, Dinur U (1980) Isr J Chem 19:165–173

  135. 135.

    Nalawajski RF, Parr RG (2000) Proc Natl Acad Sci (USA) 97:8879–8882

  136. 136.

    Nalewajski RF (2003) Adv Quantum Chem 43:119–184

  137. 137.

    Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109:3957–3959

  138. 138.

    Nagy A (2003) J Chem Phys 119:9401–9405

  139. 139.

    Nagy A (2013) Chem Phys Lett 556:355–358

  140. 140.

    Liu S (2007) J Chem Phys 126:244103

  141. 141.

    Liu S, Rong C, Lu T (2014) J Phys Chem A 118:3698–3704

  142. 142.

    Wu Z, Rong C, Lu T, Ayers PW, Liu S (2015) Phys Chem Chem Phys 17:27052–27061

  143. 143.

    Liu S, Rong C, Wu Z, Lu T (2015) Acta Phys Chim Sin 31:2057–2063

  144. 144.

    Liu SB (2016) Acta Phys Chim Sin 32:98–118

  145. 145.

    Wu W, Wu Z, Rong C, Lu T, Huang Y, Liu S (2015) J Phys Chem A 119:8216–8224

  146. 146.

    Zhou X, Rong C, Lu T, Zhou P, Liu S (2016) J Phys Chem A 120:3634–3642

  147. 147.

    Ayers PW (2008) J Math Chem 43:285–303

  148. 148.

    Parr RG, Bartolotti LJ (1982) J Am Chem Soc 104:3801–3803

  149. 149.

    Fuentealba P, Parr RG (1991) J Chem Phys 94:5559–5564

  150. 150.

    Morell C, Grand A, Toro-Labbé A, Chermette H (2013) J Mol Mod 19:2893–2900

  151. 151.

    Chattaraj PK, Liu GH, Parr RG (1995) Chem Phys Lett 237:171–176

  152. 152.

    Franco- Pérez M, Ayers PW, Gázquez JL (2016) Theor Chem Acc 135:199

  153. 153.

    Heidar-Zadeh F, Richer M, Fias S, Miranda-Quitana RA, Chan M, Franco-Perez M, Gonzalez-Espinoza CE, Kim TD, Lanssens C, Patel AHG, Yang XD, Vöhringer-Martinez E, Cardenas C, Verstraelen T, Ayers PW (2016) Chem Phys Lett 660:307–312

  154. 154.

    Chattaraj PK, Sarkar U, Roy DR (2007) J Chem Educ 78:811–813

  155. 155.

    Klopman G (1974) In: Klopman G (ed) Chemical reactivity and reaction paths. John Wiley, New York Chapter 1

  156. 156.

    Parr RG, Von Szentpaly L, Liu SB (1999) J Am Chem Soc 121:1922–1924

  157. 157.

    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Chem Res Tox 19:356–364

  158. 158.

    Ayers PW, Anderson JSM, Rodriguez JL, Jawed Z (2005) Phys Chem Chem Phys 7:1918–1925

  159. 159.

    Broeckaert L, Moens J, Roos G, De Proft F, Geerlings P (2008) J Phys Chem 112:12164–12171

  160. 160.

    Munoz M, Cardenas C (2017) Phys Chem Chem Phys 19:16003–16012

  161. 161.

    Langenaeker W, De Proft F, Geerlings P (1995) J Phys Chem 99:6424–6431

  162. 162.

    Anderson JSM, Melin J, Ayers PW (2007) J Chem Theor Comput 3:358–374

  163. 163.

    Anderson JSM, Melin J, Ayers PW (2007) J Chem Theor Comput 3:375–389

  164. 164.

    Anderson JSM, Melin J, Ayers PW (2016) J Mol Mod 22:57

  165. 165.

    Yang W, Parr RG (1985) Proc Natl Acad Sci (USA) 82:6723–6726

  166. 166.

    Berkowitz M, Parr RG (1988) J Chem Phys 88:2554–2557

  167. 167.

    Senet P (1997) J Chem Phys 107:2516–2524

  168. 168.

    De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

  169. 169.

    De Proft F, Geerlings P (2004) Phys Chem Chem Phys 6:242–248

  170. 170.

    Nalewajski RF, Parr RG (1982) J Chem Phys 77:399–407

  171. 171.

    Ayers PW, Yang W (2004) In: Bultinck P, De Winter H, Langenaeker W, Tollenaere JP (eds) Computational medicinal chemistry. Marcel Dekker, New York (Chapter 4)

  172. 172.

    Geerlings P, De Proft F, Fias S (2018) Acta Phys Chim Sin 34:699–707

  173. 173.

    Fuentealba P, David J, Guerra D (2010) J Mol Struct (THEOCHEM) 943:127–137

  174. 174.

    Chattaraj PK, Sarkar U, Roy DR, Elango M, Parthasarathi P, Subramanian V (2006) Ind J Chem A 45:1099–1112

  175. 175.

    Berlin T (1951) J Chem Phys 19:208

  176. 176.

    Balawender R, De Proft F, Geerlings P (2001) J Chem Phys 114:4441–4449

  177. 177.

    Geerlings P, De Proft F, Balawender B (2002) In: Sen KD (ed) Reviews of modern quantum chemistry, vol II. World Scientific, Hackensack, pp 1053–1107

  178. 178.

    Chakraborty D, Cardenas C, Echegaray E, Toro-Labbé A, Ayers PW (2012) Chem Phys Lett 539–540:168–171

  179. 179.

    Bader RW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

  180. 180.

    Nalewajski RF (1984) J Am Chem Soc 106:944–945

  181. 181.

    Mortier WJ, Ghosh SK, Shankar S (1986) J Am Chem Soc 108:4315–4320

  182. 182.

    Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere JP (2002) J Phys Chem A 106:7887–7894

  183. 183.

    Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP (2002) J Phys Chem A 106:7895–7901

  184. 184.

    Gázquez JL, Méndez F (1994) J Phys Chem 98:4591–4593

  185. 185.

    Méndez F, Gaázquez JL (1994) J Am Chem Soc 116:9298–9301

  186. 186.

    Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855–1856

  187. 187.

    Damoun S, Vandewoude G, Mendez F, Geerlings P (1997) J Phys Chem 101:886–893

  188. 188.

    Chattaraj PK, Roy DR, Geerlings P (2007) Torrent-Sucarrat M. Theor Chem Acc 118:923–930

  189. 189.

    Polanco-Ramίrez CA, Franco-Pérez M, Carmona-Espίndola J, Gázquez JL, Ayers PW (2017) Phys Chem Chem Phys 19:12355–12364

  190. 190.

    Franco-Pérez M, Polanco-Ramίrez CA, Gázquez JL, Ayers PW (2018) J Mol Mod 24:285

  191. 191.

    Franco-Pérez M, Polanco-Ramίrez CA, Gázquez JL, Ayers PW (2018) Phys Chem Chem Phys 20:9011–9014

  192. 192.

    Guegan F, Lamine W, Chermette H, Morell C (2018) Phys Chem Chem Phys 20:9006–9010

  193. 193.

    Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

  194. 194.

    Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) J Am Chem Soc 123:7951–7952

  195. 195.

    Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) J Chem Phys 117:10561–10570

  196. 196.

    Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126–16130

  197. 197.

    Chattaraj PK, Sengupta S (1997) J Phys Chem A 101:7893–7900

  198. 198.

    Politzer P (1987) J Chem Phys 86:1072–1073

  199. 199.

    Blair SA, Thakkar AJ (2013) Chem Phys Lett 556:346–349

  200. 200.

    Chattaraj PK, Giri S, Duley S (2010) J Phys Chem Lett 1:1064–1067

  201. 201.

    Gutiérrrez-Oliva S, Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:8964–8995

  202. 202.

    Pérez P, Andres J, Safont V, Tapia O, Contreras R (2002) J Phys Chem A 106:5353–5357

  203. 203.

    Pérez P (2003) J Phys Chem A 107:522–525

  204. 204.

    Olah J, De Proft F, Veszpremi T, Geerlings P (2004) J Phys Chem A 108:490–499

  205. 205.

    Miranda-Quintana RA, Ayers PW (2016) Theor Chem Acc 135:1–18

  206. 206.

    Khatua M, Sarkar U, Chattaraj PK (2014) Eur Phys J D 68:2

  207. 207.

    Chattaraj PK, Arun Murthy TVS, Giri S, Roy D (2007) J Mol Struct (THEOCHEM) 813:63–65

  208. 208.

    Tanwar A, Pal S, Roy DR, Chattaraj PK (2006) J Chem Phys 125:056101

  209. 209.

    Parthasarathi R, Subramanian V, Chattaraj PK (2003) Chem Phys Lett 382:48–56

  210. 210.

    Kar R, Pal S (2008) Theor Chem Acc 120:375–383

  211. 211.

    Ong MT, Leiding J, Tao H, Virshup AM, Martinez TJ (2009) J Am Chem Soc 131:6377–6379

  212. 212.

    Stauch T, Dreuw A (2016) Chem Rev 116:14137–14180

  213. 213.

    Beyer MK (2000) J Chem Phys 112:7307–7312

  214. 214.

    Chattaraj PK, Roy DR (2005) J Phys Chem A 109:3771–3772

  215. 215.

    Chattaraj PK, Roy DR (2006) J Phys Chem A 110:11401–11403

  216. 216.

    Prigogine I, Defay R (1954) Chemical thermodynamics. Longman, Harlow

  217. 217.

    De Proft F, Forquet V, Ourri B, Chermette H, Geerlings P, Morell C (2015) Phys Chem Chem Phys 17:9359–9368

  218. 218.

    Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) Phys Chem Chem Phys 15:14465–14475

  219. 219.

    Pinter B, De Proft F, Veszpremi T, Geerlings P (2005) J Chem Sci 117:561–571

  220. 220.

    De Proft F, Fias S, Van Alsenoy C, Geerlings P (2005) J Phys Chem A 109:6335–6343

  221. 221.

    Chattaraj PK, Poddar A (1999) J Phys Chem A 103:1274–1275

  222. 222.

    Chattaraj PK, Poddar A (1999) J Phys Chem A 103:8691–8699

  223. 223.

    Chattaraj PK, Sarkar U (2007) In: Toro-Labbé A (ed) Theoretical aspects of chemical reactivity. Elsevier, Amsterdam (Chapter 13)

  224. 224.

    Chattaraj PK, Poddar A, Maiti B (2002) In: Sen KD (ed) Reviews of modern quantum chemistry. World Scientific, Hackensack, pp 871–935

  225. 225.

    Chattaraj PK, Maiti B (2001) J Phys Chem A 105:169–183

  226. 226.

    Chattaraj PK, Maiti B (2003) J Am Chem Soc 125:2705–2710

  227. 227.

    Chattaraj PK, Maiti B (2004) J Phys Chem A 108:658–664

  228. 228.

    Mondal S, Chattaraj PK (2014) Chem Phys Lett 593:128–131

  229. 229.

    Shannon CE (1948) Bell Syst Tech J 27:379–423

  230. 230.

    Fischer RA (1925) Math Proc Camb 22:700–725

  231. 231.

    Renyi A (1960) In: Proceedings of fourth Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley CA, pp 547–561

  232. 232.

    Onicescu O (1966) C R Acad Sci A-B 263:841–842

  233. 233.

    Esquivel RO, Liu S, Angelo JC, Dehesa JS, Antolin J, Molina-Espirita M (2011) J Phys Chem A 115:4406–4415

  234. 234.

    Yu DH, Rong CY, Lu T, Chattaraj PK, De Proft F, Liu SB (2017) Phys Chem Chem Phys 19:18635–18645

  235. 235.

    Yu DH, Rong CY, Lu T, De Proft F, Liu SB (2018) ACS Omega 3:18370–18379

  236. 236.

    Deng YE, Yu DH, Cao XF, Liu LH, Rong CY, Lu T, Liu SB (2018) Mol Phys 116:956–968

  237. 237.

    Yu DH, Rong CY, Lu T, De Proft F, Liu SB (2018) Acta Phys Chim Sin 34:639–649

  238. 238.

    Yu D, Stuyver T, Rong CY, Alonso M, Lu T, De Proft F, Geerlings P, Liu S (2019) Phys Chem Chem Phys 21:18195–18210

  239. 239.

    Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

  240. 240.

    te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–937

  241. 241.

    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

  242. 242.

    Van Zeist WJ, Bickelhaupt FM (2010) Org Biom Chem 8:3118–3127

  243. 243.

    Berkowitz M (1987) J Am Chem Soc 109:4823–4825

  244. 244.

    Chandra AK, Michalak A, Nguyen MT, Nalewajski RF (1998) J Phys Chem A 102:10182–10188

  245. 245.

    Frisch MJ et al (2016) GAUSSIAN 16. Gaussian Inc, Wallingford

  246. 246.

    Verstraelen T, Tecmes P, Heidar Zadeh F, Bogulawski K, Chan M, Zhao Y, Kim TD, Vandenbrande S, Yang D, Gonzalez-Espinoza CE, Fias S, Limacher PA, Berrocal D, Ali Malek, Ayers PW (2015) HORTON 2.0.0. http://theochem.github.comhorton/

  247. 247.

    Baerends EJ et al (2019) ADF2019, SCM, theoretical chemistry. Vrije Universiteit Amsterdam, The Netherlands. http://www.scm.com/

Download references

Acknowledgements

The authors want to dedicate this contribution to Professor Robert G. Parr, who passed away in 2017. Bob Parr was the founding father of conceptual DFT. His contributions were an inexhaustible source of inspiration to all the present authors. His wisdom, creativity and vision, scientific leadership, and friendship to many of the present authors will last forever in their minds. The authors also want to thank one of them, Shubin Liu, for organizing the exciting CCTC2018 Conference in Changsha in December 2018 and the associated round table discussion which led to this paper.

Author information

Correspondence to Paul Geerlings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geerlings, P., Chamorro, E., Chattaraj, P.K. et al. Conceptual density functional theory: status, prospects, issues. Theor Chem Acc 139, 36 (2020). https://doi.org/10.1007/s00214-020-2546-7

Download citation

Keywords

  • Density Functional Theory (DFT)
  • Conceptual DFT (CDFT)
  • CDFT history
  • CDFT philosophy
  • CDFT issues