Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanistic study of the [2+2] cycloaddition reaction of cyclohexenone and its derivatives with vinyl acetate

  • 57 Accesses

Abstract

The mechanism of [2+2] cycloaddition reaction of cyclohexenone and its derivatives with vinyl acetate was studied at the B3LYP-D3/6-311++G(d,p) level of theory. Computations showed that this reaction occurs via a stepwise mechanism. The geometries of the first and second transition states were determined. Moreover, we investigated the effect of the chalcogens of the ketone function of the cyclohexenone on the cycloaddition reactions. The activation energies decrease significantly on proceeding from oxygen (O), through sulfur (S) and onto selenium (Se). The energetic results indicate that the stability of the cycloadducts decreases on proceeding from O, through S and onto Se as confirmed by the analysis of their molecular orbitals. Moreover, we determined the pattern of the lowest singlet and triplet electronic states of these species. We proposed an explanation for the regioselectivity of these reactions for the selective products.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Dembitsky VM (2008) Bioactive cyclobutane-containing alkaloids. J Nat Med 62(1):1–33

  2. 2.

    Antonsen S, Østby RB, Stenstrøm Y (2018) Naturally occurring cyclobutanes: their biological significance and synthesis. In: Studies in natural products chemistry. Elsevier, Amsterdam, pp 1–40

  3. 3.

    Woodward RB, Hoffmann R (1971) The conservation of orbital symmetry. In: Woodward RB, Hoffmann R (eds) The conservation of orbital symmetry. Academic Press, Cambridge, p 37

  4. 4.

    Doubleday C, McIver JW, Page M (1982) On the structure of the hypothetical common tetramethylene biradical intermediate. J Am Chem Soc 104(13):3768–3770

  5. 5.

    Bernardi F, Bottoni A, Olivucci M, Venturini A, Robb MA (1994) Ab initio MC-SCF study of thermal and photochemical [2+2] cycloadditions. J Chem Soc Faraday Trans 90(12):1617–1630

  6. 6.

    Bernardi F, Bottoni A, Robb MA, Schlegel HB, Tonachini G (1985) An MC-SCF study of the thermal cycloaddition of two ethylenes. J Am Chem Soc 107(8):2260–2264

  7. 7.

    Bachrach SM, Gilbert JC, Laird DW (2001) DFT study of the cycloaddition reactions of strained alkynes. J Am Chem Soc 123(27):6706–6707

  8. 8.

    Domingo L, Perez P, Contreras R (2005) A DFT analysis of the strain-induced regioselective [2+2] cycloaddition of benzyne possessing fused four-membered ring. Lett Org Chem 2(1):68–73

  9. 9.

    Domingo LR, Ríos-Gutiérrez M, Pérez P (2015) A DFT study of the ionic [2+2] cycloaddition reactions of keteniminium cations with terminal acetylenes. Tetrahedron 71(16):2421–2427

  10. 10.

    Li Y, Guo C, Chen B-Z (2016) A theoretical study on intermolecular [2+2] radical cation cycloaddition reactions and the competition between concerted and stepwise mechanisms. Comput Theor Chem 1078:163–172

  11. 11.

    Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A (2016) Synthesis of amino-cyclobutanes via [2+2] cycloadditions involving keteniminium intermediates. Tetrahedron Lett 57(25):2697–2702

  12. 12.

    Li X, Xu J (2013) Annuloselectivity in cycloadditions of ketenes with imines: a DFT study. J Org Chem 78(2):347–355

  13. 13.

    Fukuyama T, Hino Y, Kamata N, Ryu I (2004) Quick execution of [2+2] type photochemical cycloaddition reaction by continuous flow system using a glass-made microreactor. Chem Lett 33(11):1430–1431

  14. 14.

    Fukuyama T, Kajihara Y, Hino Y, Ryu I (2011) Continuous microflow [2+2] photocycloaddition reactions using energy-saving compact light sources. J Flow Chem 1(1):40–45

  15. 15.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Ding WF, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09 B.01

  16. 16.

    Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

  17. 17.

    Khabashesku VN, Kudin KN, Margrave JL (2001) Density functional theoretical studies of [2+2] cycloaddition of simple transient silenes and germenes to ethylene, formaldehyde, and thioformaldehyde, and vibrational analysis of spectra of reactants and cyclic products. Russ Chem Bull 50(1):20–28

  18. 18.

    Lemal DM (2017) Pathways for concerted [2+2] cycloaddition to cumulenes. J Org Chem 82(24):13012–13019

  19. 19.

    Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54(2):724–728

  20. 20.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

  21. 21.

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

  22. 22.

    Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74(23):4161–4163

  23. 23.

    Legault C (2009) CYLview 1.0. https://www.cylview.org/

  24. 24.

    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

  25. 25.

    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

  26. 26.

    Parr RG, Weitao Y (1994) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

  27. 27.

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

  28. 28.

    Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73(12):4615–4624

  29. 29.

    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels−Alder reactions. J Phys Chem A 106(29):6871–6875

  30. 30.

    D’Auria M (2012) Regio- and sterochemistry of the [2+2]-cycloaddition reaction between enones and alkenes. A DFT study. Tetrahedron 68(42):8699–8703

  31. 31.

    Corey EJ, Bass JD, LeMahieu R, Mitra RB (1964) A study of the photochemical reactions of 2-cyclohexenones with substituted olefins. J Am Chem Soc 86(24):5570–5583

  32. 32.

    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58(22):4417–4423

Download references

Author information

Correspondence to Hassan H. Abdallah or Majdi Hochlaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammad-Salim, H.A., Abdallah, H.H., Maiyelvaganan, K.R. et al. Mechanistic study of the [2+2] cycloaddition reaction of cyclohexenone and its derivatives with vinyl acetate. Theor Chem Acc 139, 19 (2020). https://doi.org/10.1007/s00214-019-2542-y

Download citation

Keywords

  • DFT calculations
  • Cycloadditions
  • Mechanistic study