A DFT study on the oxidation of cyclotrisilene by nitrous oxide: the σ- and π-bonds reactivity

  • Cem Burak YildizEmail author
Regular Article


The chemistry of heteroatom analogues of cyclopropane derivatives has been receiving considerable interest because of their unexpected reactivities. Herein, the density functional theory (DFT) method was applied to understand reactivity and selectivity of sigma (σ) and pi (π) bonds in methyl and aryl (2,4,6-iPr3C6H2)-substituted cyclotrisilenes, as silicon analogue of cyclopropane, for the reaction with nitrous oxide. The DFT calculations at the APFD/def2-TZVPP level of theory show that three types of isomers with Si3O subunit can be considered as potential products for methylated system. The further DFT calculations on the proposed reactions favor the π-bond reactivity of the methyl-substituted cyclotrisilene to yield a structure that adopted the cyclic planar-trans geometry with the lower energy barrier and considerably high exergonic nature. Moreover, π-bond reactivity of the cyclotrisilene with aryl group promotes the formation of the folded isomer of the planar-trans structure with only 0.3 kcal mol−1 energy gap at the B3LYP-D3/6-31G(d,p) level of theory. The theoretical results provide a crucial guide for the reaction to be tackled experimentally.


Small molecule activation Main group species DFT Nitrous oxide Cyclotrisilene 



Financial support by the Aksaray University coordinatorship of scientific research projects (Grant No. 2017-036) is gratefully acknowledged. The author wishes to express his thanks to the reviewers for valuable comments that improved the quality of the manuscript.

Supplementary material

214_2019_2540_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1080 kb)


  1. 1.
    Lee VY (2017) Organosilicon compounds theory and experiment (synthesis). Academic Press, New YorkGoogle Scholar
  2. 2.
    Iwamoto R, Kabuto C, Kira M (1999) J Am Chem Soc 121:886–887Google Scholar
  3. 3.
    Iwamoto T, Tamura M, Kabuto C, Kira M (2000) Science 290:504–506PubMedGoogle Scholar
  4. 4.
    Ichinohe M, Matsuno T, Sekiguchi A (1999) Angew Chem Int Ed 38:2194–2196Google Scholar
  5. 5.
    Uchiyama K, Nagendran S, Ishida S, Iwamoto T, Kira M (2007) J Am Chem Soc 129:10638–10639PubMedGoogle Scholar
  6. 6.
    Lee VY, Yasuda H, Sekiguchi A (2007) J Am Chem Soc 129:2436–2437PubMedGoogle Scholar
  7. 7.
    Leszczynska K, Abersfelder K, Mix A, Neumann B, Stammler HG, Cowley MJ, Jutzi P, Scheschkewitz D (2012) Angew Chem Int Ed 51:6785–6788Google Scholar
  8. 8.
    Tsurusaki A, Kamiyama J, Kyushin S (2014) J Am Chem Soc 136:12896–12898PubMedGoogle Scholar
  9. 9.
    Cowley MJ, Ohmori Y, Huch V, Ichinohe M, Sekiguchi A, Scheschkewitz D (2013) Angew Chem Int Ed 52:13247–13250Google Scholar
  10. 10.
    Ohmori Y, Ichinohe M, Sekiguchi A, Cowley MJ, Huch V, Scheschkewitz D (2013) Organomet 32:1591–1594Google Scholar
  11. 11.
    Lee VY, Gapurenko OA, Miyazaki S, Sekiguchi A, Minyaev RM, Minkin VI, Gornitzka H (2015) Angew Chem Int Ed 54:14118–14122Google Scholar
  12. 12.
    Zhao H, Leszczynska K, Klemmer L, Huch V, Zimmer M, Scheschkewitz D (2018) Angew Chem Int Ed 57:2445–2449Google Scholar
  13. 13.
    Lee VY, Miyazaki S, Yasuda H, Sekiguchi A (2008) J Am Chem Soc 130:2758–2759PubMedGoogle Scholar
  14. 14.
    Zhao H, Klemmer L, Cowley MJ, Majumdar M, Huch V, Zimmer M, Scheschkewitz D (2018) Chem Commun 54:8399–8402Google Scholar
  15. 15.
    Zhao H, Klemmer L, Cowley MJ, Huch V, Zimmer M, Scheschkewitz D (2018) Z Anorg Allg Chem 644:999–1005Google Scholar
  16. 16.
    Iwamoto T, Tamura M, Kabuto C, Kira M (2003) Organomet 22:2342–2344Google Scholar
  17. 17.
    Yokelson HB, Millevolte AJ, Gillette GR, West R (1987) J Am Chem Soc 109:6865–6866Google Scholar
  18. 18.
    Maity B, Koley D (2014) J Mol Graph Model 51:50–63PubMedGoogle Scholar
  19. 19.
    Maity B, Koley D (2017) J Phys Chem A 121:401–417PubMedGoogle Scholar
  20. 20.
    Khan S, Michel R, Koley D, Roesky HW, Stalke D (2011) Inorg Chem 50:10878–10883PubMedGoogle Scholar
  21. 21.
    Yildiz CB (2018) J Mol Model 24:18Google Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneM Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewsk VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pittsburgh PA, Pople JA (2016) Gaussian 16, revision B01. Gaussian Inc, WallingfordGoogle Scholar
  23. 23.
    Austin A, Petersson G, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) J Chem Theory Comput 8:4989–5007PubMedGoogle Scholar
  24. 24.
    Weigend F (2006) Phys Chem Chem Phys 8:1057–1065PubMedGoogle Scholar
  25. 25.
    Noodleman L (1981) J Chem Phys 74:5737–5743Google Scholar
  26. 26.
    Noodleman L, Baerends EJ (1984) J Am Chem Soc 106:2316–2327Google Scholar
  27. 27.
    PvR Schleyer, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaeffer HFIII (1998) The encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  28. 28.
    Kikuchi A, Ito H, Abe J (2005) J Phys Chem B 109:19448–19453PubMedGoogle Scholar
  29. 29.
    Borden WT, Davidson ER (1996) Acc Chem Res 29:67–75Google Scholar
  30. 30.
    Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740Google Scholar
  31. 31.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926Google Scholar
  32. 32.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO Version 3.1Google Scholar
  33. 33.
    Becke AD (1993) J Chem Phys 98:5648–5652Google Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785–789Google Scholar
  35. 35.
    Nieder D, Klemmer L, Kaiser Y, Huch V, Scheschkewitz D (2018) Organomet 37:632–635Google Scholar
  36. 36.
    Wang H, Zhang J, Xie J (2018) J Organomet Chem 865:173–177Google Scholar
  37. 37.
    Gonzalez C, Schlegel HB (1991) J Chem Phys 95:5853–5860Google Scholar
  38. 38.
    Wiberg KB (1968) Tetrahedron 24:1083–1096Google Scholar
  39. 39.
    Dennington RII, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2009) GaussView v.5.0.9 visualizer and builder. Gaussian Inc, WallingfordGoogle Scholar
  40. 40.
    Padwa A (1984) 1,3-dipolar cycloaddition chemistry. Wiley, New YorkGoogle Scholar
  41. 41.
    Haberhauer G, Gleiter R, Woitschetzki S (2015) J Org Chem 80:12321–12332PubMedGoogle Scholar
  42. 42.
    Siadati SA (2018) Tetrahedron Lett 56:4857–4944Google Scholar
  43. 43.
    Yildiz CB (2018) Comput Theor Chem 1134:47–53Google Scholar
  44. 44.
    Boatz JA, Gordon MS (1989) J Phys Chem 93:2888–2891Google Scholar
  45. 45.
    Kira M (2014) Organomet 33:644–653Google Scholar
  46. 46.
    Wiberg N, Schuster H, Simon A, Peters K (1986) Angew Chem Int Ed 25:79–80Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Medicinal and Aromatic PlantsUniversity of AksarayAksarayTurkey

Personalised recommendations