Advertisement

Ligand stabilized transient “MNC” and its influence on MNC → MCN isomerization process: a computational study (M = Cu, Ag, and Au)

  • Ranita Pal
  • Gourhari Jana
  • Pratim Kumar ChattarajEmail author
Regular Article
Part of the following topical collections:
  1. Chemical Concepts from Theory and Computation

Abstract

A theoretical investigation of the binding ability of different ligands [L = CO, H2O, H2S, N2, NH3, 1,3-dimethylimidazole (DMI), C2H2 and C2H4] with metal isocyanide and cyanide (MNC and MCN; M = Cu, Ag, Au) compounds has been carried out using quantum chemical computations. In order to analyze the thermochemical stability of these complexes, we have calculated the changes in the related dissociation energies and free energies by considering different possible dissociation pathways (four two-body and one three-body) such as (a) LMCN(/NC) = L + MCN(/NC); (b) LMCN = LM + CN; (c) LMCN = L + M + CN; (d) LMCN = LM+ + CN; and (e) LMCN = L + MCN+. The possible dissociation processes are endothermic in nature at room temperature suggesting non-spontaneity at 298 K. Our inspection suggests that MNC have higher binding ability than the MCN compounds in all of the L-bonding cases and both of them follow similar trends as Au > Cu > Ag. The natural bond orbital analysis, topological analysis of the electron density from atoms in molecules technique, and energy decomposition analysis have been carried out to characterize the nature of interaction between L and MCN which shows that the L‐M bonds acquire some degree of covalent character. Furthermore, in order to check the validity of the conceptual DFT-based electronic structure principles like maximum hardness and minimum electrophilicity principles, the change in the relevant global reactivity descriptors like chemical hardness (η), chemical potential (μ), and electrophilicity index (ω) is also studied along the isomerization path, LMNC → LMCN.

Keywords

Isomerization Geometry and stability Nature of bonding Energy decomposition analysis CDFT 

Notes

Acknowledgements

PKC would like to thank Professor Shubin Liu for kindly inviting him to contribute an article to this special issue. He also thanks the DST, New Delhi, for the J. C. Bose National Fellowship. GJ and RP thank IIT, Kharagpur, and CSIR, respectively, for their fellowships.

Supplementary material

214_2019_2532_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1258 kb)

References

  1. 1.
    Kaiser RI (2002) Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral–neutral reactions. Chem Rev 102:1309–1358PubMedGoogle Scholar
  2. 2.
    Bell M, Feldman P, Travers M, McCarthy M, Gottlieb C, Thaddeus P (1997) Detection of HC11N in the cold dust cloud TMC-1. Astrophys J Lett 483:L61Google Scholar
  3. 3.
    Hoffmann R (1963) An extended Hückel theory. I. Hydrocarbons. J Chem Phys 39:1397–1412Google Scholar
  4. 4.
    Van Dine GW, Hoffmann R (1968) Isocyanide-cyanide and isoelectronic rearrangements. J Am Chem Soc 90:3227–3232Google Scholar
  5. 5.
    Moffat J, Tang K (1973) The methyl isocyanide isomerization: a CNDO/2 study with partitioning of energy. Theor Chim Acta 32:171–182Google Scholar
  6. 6.
    Dewar MJ, Kohn M (1972) Ground states of. sigma.-bonded molecules. XVI. Rearrangement of methyl isocyanide to acetonitrile. J Am Chem Soc 94:2704–2706Google Scholar
  7. 7.
    Chan SC, Rabinovitch BS, Bryant JT, Spicer LD, Fujimoto T, Lin YN, Pavlou S (1970) Energy transfer in thermal methyl isocyanide isomerization. Comprehensive investigation. J Phys Chem 74:3160–3176Google Scholar
  8. 8.
    Moffat J (1977) Vinyl cyanide, vinyl isocyanide, and the isomerization reaction. A theoretical study. J Phys Chem 81:82–86Google Scholar
  9. 9.
    Pulliam R, Savage C, Agúndez M, Cernicharo J, Guélin M, Ziurys LM (2010) Identification of KCN in IRC + 10216: evidence for selective cyanide chemistry. Astrophys J Lett 725:L181Google Scholar
  10. 10.
    Zack L, Halfen D, Ziurys LM (2011) Detection of FeCN (X4Δi) in IRC + 10216: a new interstellar molecule. Astrophys J Lett 733:L36Google Scholar
  11. 11.
    Turner B, Steimle T, Meerts L (1994) Detection of sodium cyanide (NaCN) in IRC 10216. Astrophys J 426:97–100Google Scholar
  12. 12.
    Ziurys LM, Apponi A, Guélin M, Cernicharo J (1995) Detection of MgCN in IRC + 10216: a new metal-bearing free radical. Astrophys J 445:L47–L50Google Scholar
  13. 13.
    Guélin M, Muller S, Cernicharo J, Apponi A, McCarthy M, Gottlieb C, Thaddeus P (2000) Astronomical detection of the free radical SiCN. Astron Astrophys 363:L9–L12Google Scholar
  14. 14.
    Turner B, Petrie S, Dunbar R, Langston G (2005) A search for MgNC and AlNC in TMC-1: the status of metals in dark cloud cores. Astrophys J 621:817Google Scholar
  15. 15.
    Senent ML, Dumouchel F, Lique F (2012) Cyanide/isocyanide abundances in the interstellar medium–I. Theoretical spectroscopic characterization. Mon Not R Astron Soc 420:1188–1194Google Scholar
  16. 16.
    Clavaguéra-Sarrio C, Hoyau S, Ismail N, Marsden CJ (2003) Modeling complexes of the uranyl ion UO2L2 n+ : binding energies, geometries, and bonding analysis. J Phys Chem A 107:4515–4525Google Scholar
  17. 17.
    Straka M, Patzschke M, Pyykkö P (2003) Why are hexavalent uranium cyanides rare while U–F and U–O bonds are common and short? Theor Chem Acc 109:332–340Google Scholar
  18. 18.
    Cho H-G, Andrews L (2011) Infrared spectra of the η2–M(NC)–CH3, CH3–MNC, and CH2 = M(H)NC complexes prepared by reactions of thorium and uranium atoms with acetonitrile. Organometallics 31:535–544Google Scholar
  19. 19.
    Gong Y, Cho HG, Andrews L (2015) Reactions of laser-ablated U atoms with HCN: infrared spectra in solid argon and quantum chemical calculations for HUNC. Eur J Inorg Chem 2015:2974–2981Google Scholar
  20. 20.
    Gong Y, Andrews L, Liebov BK, Fang Z, Garner EB III, Dixon DA (2015) Reactions of laser-ablated U atoms with (CN)2: infrared spectra and electronic structure calculations of UNC, U(NC)2, and U(NC)4 in solid argon. Chem Commun 51:3899–3902Google Scholar
  21. 21.
    Huang Z, Sun L, Yuan Y, Li Y, Wang X (2016) Theoretical insights into halogenated uranium cyanide/isocyanide compounds. Inorg Chem 55:12559–12567PubMedGoogle Scholar
  22. 22.
    Rayón VM, Redondo P, Valdés H, Barrientos C, Largo A (2007) Cyanides and isocyanides of first-row transition metals: molecular structure, bonding, and isomerization barriers. J Phys Chem A 111:6334–6344PubMedGoogle Scholar
  23. 23.
    Grotjahn DB, Brewster M, Ziurys LM (2002) The first precise molecular structure of a monomeric transition metal cyanide, copper (I) cyanide. J Am Chem Soc 124:5895–5901PubMedGoogle Scholar
  24. 24.
    Okabayashi T, Okabayashi EY, Koto F, Ishida T, Tanimoto M (2009) Detection of free monomeric silver (I) and gold (I) cyanides, AgCN and AuCN: microwave spectra and molecular structure. J Am Chem Soc 131:11712–11718PubMedGoogle Scholar
  25. 25.
    Jana G, Pan S, Osorio E, Zhao L, Merino G, Chattaraj PK (2018) Cyanide–isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au). Phys Chem Chem Phys 20:18491–18502PubMedGoogle Scholar
  26. 26.
    Huang Z, Wang X, Zhang J, Li Y, Li Y (2018) An ab initio study on coinage atom-inserted cyanide/isocyanide: XMCN/XMNC (M = coinage atoms; X = halogen). RSC Adv 8:14705–14712Google Scholar
  27. 27.
    Arppe T, Khriachtchev L, Lignell A, Domanskaya AV, Räsänen M (2012) Halogenated Xenon Cyanides ClXeCN, ClXeNC, and BrXeCN. Inorg Chem 51:4398–4402PubMedGoogle Scholar
  28. 28.
    Cardenas-Jiron GI, Toro-Labbe A (1995) Hardness profile and activation hardness for rotational isomerization processes. 2. The maximum hardness principle. J Phys Chem 99:12730–12738Google Scholar
  29. 29.
    Cardenas-Jiron GI, Lahsen J, Toro-Labbe A (1995) Hardness profile and activation hardness for rotational isomerization processes. 1. Application to nitrous acid and hydrogen persulfide. J Phys Chem 99:5325–5330Google Scholar
  30. 30.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620PubMedGoogle Scholar
  31. 31.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618Google Scholar
  32. 32.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023Google Scholar
  33. 33.
    Woon DE, Dunning TH Jr (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100:2975–2988Google Scholar
  34. 34.
    Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371Google Scholar
  35. 35.
    Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–296Google Scholar
  36. 36.
    Cundari TR (1994) Calculation of a methane carbon-hydrogen oxidative addition trajectory: comparison to experiment and methane activation by high-valent complexes. J Am Chem Soc 116:340–347Google Scholar
  37. 37.
    Song J, Hall MB (1993) Theoretical studies of inorganic and organometallic reaction mechanisms. 6. Methane activation on transient cyclopentadienylcarbonylrhodium. Organometallics 12:3118–3126Google Scholar
  38. 38.
    Koga N, Morokuma K (1990) Ab initio potential energy surface and electron correlation effect in CH activation of methane by coordinatively unsaturated chlorodiphosphinerhodium (I). J Phys Chem 94:5454–5462Google Scholar
  39. 39.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096Google Scholar
  40. 40.
    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073Google Scholar
  41. 41.
    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34:1429–1437PubMedGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision A03. Gaussian Inc, WallingfordGoogle Scholar
  43. 43.
    Bader R et al (1990) AIMPAC: a suite of programs for the theory of atoms in molecules, Hamilton, Canada (contact http://www.chemistry.mcmaster.ca/aimpac) Search PubMed; RFW Bader, Atoms in Molecules: A Quantum Theory. Clarendon Press, Oxford
  44. 44.
    Huzinaga S, Miguel B (1990) A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents. Chem Phys Lett 175:289–291Google Scholar
  45. 45.
    Huzinaga S, Klobukowski M (1993) Well-tempered Gaussian basis sets for the calculation of matrix Hartree–Fock wavefunctions. Chem Phys Lett 212:260–264Google Scholar
  46. 46.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592PubMedGoogle Scholar
  47. 47.
    Gao W, Feng H, Xuan X, Chen L (2012) A theoretical study of N–H··· π H-bond interaction of pyrrole: from clusters to the liquid. Mol Phys 110:2151–2161Google Scholar
  48. 48.
    Gt Te Velde, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967Google Scholar
  49. 49.
    Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212PubMedGoogle Scholar
  50. 50.
    Morell C, Grand A, Toro-Labbé A (2006) Theoretical support for using the Δf(r) descriptor. Chem Phy Lett 425:342–346Google Scholar
  51. 51.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091PubMedGoogle Scholar
  52. 52.
    Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy B, Gutierrez-Oliva S, Toro-Labbé A, Roy D, Chattaraj PK (2007) Multiphilic descriptor for chemical reactivity and selectivity. J Phys Chem A 111:9130–9138PubMedGoogle Scholar
  53. 53.
    Padmanabhan J, Parthasarathi R, Sarkar U, Subramanian V, Chattaraj PK (2004) Effect of solvation on the condensed Fukui function and the generalized philicity index. Chem Phys Lett 383:122–128Google Scholar
  54. 54.
    Parr RG, Lv Szentpaly, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924Google Scholar
  55. 55.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  56. 56.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516Google Scholar
  57. 57.
    Pearson R (1997) Chemical hardness-applications from molecules to solids, VCH. Wiley, WeinheimGoogle Scholar
  58. 58.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855Google Scholar
  59. 59.
    Chattaraj PK, Cedillo A, Parr RG, Arnett EM (1995) Appraisal of chemical bond making, bond breaking, and electron transfer in solution in the light of the principle of maximum hardness. J Org Chem 60:4707–4714Google Scholar
  60. 60.
    Makov G (1995) Chemical hardness in density functional theory. J Phys Chem 99:9337–9339Google Scholar
  61. 61.
    Pan S, Solà M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem A 117:1843–1852PubMedGoogle Scholar
  62. 62.
    Chattaraj PK, Pérez P, Zevallos J, Toro-Labbé A (2001) Ab initio SCF and DFT studies on solvent effects on intramolecular rearrangement reactions. J Phys Chem A 105:4272–4283Google Scholar
  63. 63.
    Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072PubMedGoogle Scholar
  64. 64.
    Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Acc 113:257–266Google Scholar
  65. 65.
    Noorizadeh S (2007) Is there a minimum electrophilicity principle in chemical reactions? Chin J Chem 25:1439–1444Google Scholar
  66. 66.
    Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal–metal and metal–ligand bonds. J Am Chem Soc 120:13429–13435Google Scholar
  67. 67.
    Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) Charge density in transition metal clusters: supported vs unsupported metal–metal interactions. J Am Chem Soc 121:10428–10429Google Scholar
  68. 68.
    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23:627–628Google Scholar
  69. 69.
    Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Edu 64:561Google Scholar
  70. 70.
    Pearson R, Chattaraj PK (2008) The hard-soft acid-base principle. Chemtracts Inorg Chem 21:1–7Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of ChemistryIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations