Bonding and electronic structures in dinuclear (X)[(Ind)M2L2] complexes (M = Ni, Pd, L = CO, PEt3, X = Cl, Allyl, Ind = indenyl, Cp = cyclopentadienyl): analogy between four-electron donor ligands

  • Sabri Mecheri
  • Bachir ZouchouneEmail author
  • Saber-Mustapha Zendaoui
Regular Article


The calculations of bimetallic complexes of the type (X)[(Ind)M2(L)2] (M = Ni, Pd, L = CO, (PEt3) and X = Allyl, Cp and indenyl) have been done using two DFT functionals, namely BP86 and B3LYP*. The allyl, Cp and indenyl ligands adopt the same η3-coordination mode with a π bond and can be considered to be isolobal, while the chloride acts as σ- and π-donor. The computed structural and energetic parameters and energy decomposition yield chemically useful information. We report that the metal–metal bond distances are slightly sensitive to the electron donation and electron π-backdonation as the isolobal prediction suggests. Changing the metal from Ni to Pd has the result of increasing the metal–metal bond distance, decreasing the natural population of Pd and the weakness interactions between the X ligand and the [(Ind)M2(L)2]+ fragment. The results showed that the four ligands behave quite similarly in terms of bonding, coordination mode and donation and π-backdonation properties highlighted by the orbitals’ populations and the energy decomposition. However, the strength of interactions can be classified as follows: Cl < Cp ≈ Ind < Allyl. In all the complexes studied, the M22+ moiety adopts a single metal–metal bonding attributing the 16-MVE configuration to each M(I) cation.


Coordination chemistry Energy decomposition analysis Orbital interactions Natural populations 



The authors acknowledge the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for financial support.

Authors’ contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Supplementary material

214_2019_2526_MOESM1_ESM.docx (7.4 mb)
Supplementary material 1 (DOCX 7606 kb)


  1. 1.
    Lin S, Agapie T (2011) Cross-coupling chemistry at mononuclear and dinuclear nickel complexes. Synlett 01:1–5Google Scholar
  2. 2.
    Hazari N, Hruszkewycz DP (2016) Dinuclear Pd(I) complexes with bridging allyl and related ligands. Chem Soc Rev 45:2871–2899PubMedGoogle Scholar
  3. 3.
    Paton RS, Brown JM (2012) Dinuclear palladium complexes-precursors or catalysts. Angew Chem Int Ed Engl 51:10448–10450PubMedGoogle Scholar
  4. 4.
    Zimmermann P, Limberg C (2017) Activation of small molecules at nickel (I) moieties. J Am Chem Soc 139:4233–4242PubMedGoogle Scholar
  5. 5.
    Bonney KJ, Schoenebeck F (2014) Experiment and computation: a combined approach to study the reactivity of palladium complexes in oxidation states 0 to IV. Chem Soc Rev 43:6609–6638PubMedGoogle Scholar
  6. 6.
    Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H (2015) Recent advances on palladium radical involved reactions. ACS Catal 5:6111–6137Google Scholar
  7. 7.
    Werner H (1981) Novel types of metal–metal bonded complexes containing allyl and cyclopentadienyl bridging ligands. Adv Organomet Chem 19:155–182Google Scholar
  8. 8.
    Murahashi T, Kurosawa H (2002) Organopalladium complexes containing palladium–palladium bonds. Coord Chem Rev 231:207–228Google Scholar
  9. 9.
    Hazari N, Hruszkewycz DP, Wu J (2011) Pd(I)-bridging allyl dimers: a new system for the catalytic functionalization of carbon dioxide. Synlett 13:1793–1797Google Scholar
  10. 10.
    Inatomi T, Koga Y, Matsubara K (2018) Dinuclear nickel (I) and palladium (I) complexes for highly active transformations of organic compounds. Molecules 23(1):140PubMedCentralGoogle Scholar
  11. 11.
    Hazari N, Hruszkewycz DP (2016) Dinuclear Pd(I) complexes with bridging allyl and related ligands. Chem Soc Rev 45(10):2871–2899PubMedGoogle Scholar
  12. 12.
    Werner H et al (1975) Preparation and structure of novel binuclear palladium complexes containing a metal–metal bond: μ-(η-C5H5)-μ-(η-C4H7)Pd2L2. Angew Chem Int Ed Engl 14(3):185–186Google Scholar
  13. 13.
    Werner H, Kühn A, Tune DJ, Krüger C, Brauer DJ, Sekutowski JC, Tsay YH (1977) Untersuchungenzur Reaktivität von Metall-π-Komplexen, XXII. Sandwichartiggebaute (Pd–Pd)-Zweikernkomplexemitbrückenbildenden Cyclopentadienyl-und Allyl-Liganden. Chem Beri 110:1763–1775Google Scholar
  14. 14.
    Kühn A, Werner H (1979) Untersuchungenzurreaktivität von metall-π-komplexen: XXIX. Synthesewege und reaktivität von (Pd–Pd)-und (Pt–Pt)-zweikernkomplexen des typs (μ-C5H5)(μ-allyl)M2L2. J Organomet Chem 179:421–438Google Scholar
  15. 15.
    Werner H, Kühn A (1977) A general method for the synthesis of sandwich-type complexes with a Pd–Pd or Pt–Pt bond. Angew Chem Int Ed Engl 16:412–413Google Scholar
  16. 16.
    Werner H, Kraus HJ (1979) Synthesis and structural dynamics of bis(cyclopentadienyl) phosphanepalladium complexes. Angew Chem Int Ed Engl 18:948–949Google Scholar
  17. 17.
    Norton DM, Mitchell EA, Botros NR, Jessop PG, Baird MC (2009) A superior precursor for palladium (0)-based cross-coupling and other catalytic reactions. J Org Chem 74:6674–6680PubMedGoogle Scholar
  18. 18.
    Chalkley MJ, Guard LM, Hazari N, Hofmann P, Hruszkewycz DP, Schmeier TJ, Takase MK (2013) Synthesis, electronic structure, and reactivity of palladium (I) dimers with bridging allyl, cyclopentadienyl, and indenyl ligands. Organometallics 32:4223–4238Google Scholar
  19. 19.
    Melvin PR, Nova A, Balcells D, Dai W, Hazari N, Hruszkewycz DP, Tudge MT et al (2015) Design of a versatile and improved precatalyst scaffold for palladium-catalyzed cross-coupling:(η3-1-tBu-indenyl) 2 (μ-Cl) 2Pd2. ACS Catal 5:3680–3688Google Scholar
  20. 20.
    Tanase T, Nomura T, Fukushima T, Yamamoto Y, Kobayashi K (1993) Synthesis and characterization of a binuclear palladium (I) complex with bridging η3-indenyl ligands, Pd2 (μ-η3-indenyl)2(isocyanide)2, and its transformation to a tetranuclear palladium (I) cluster of isocyanides, Pd4 (μ-acetate) 4 (μ-isocyanide) 4. Inorg Chem 32:4578–4584Google Scholar
  21. 21.
    Tanase T, Nomura T, Yamamoto Y, Kobayashi K (1991) Synthesis and characterization of binuclear palladium complexes of isocyanides with novel bridging η3-indenyl ligands. Crytal structure of [Pd2(μ-η3-indenyl)2(RNC)2](R = 2, 6-dimethylphenyl). J Organomet Chem 410:C25–C28Google Scholar
  22. 22.
    Dai W, Chalkley MJ, Brudvig GW, Hazari N, Melvin PR, Pokhrel R, Takase MK (2013) Synthesis and properties of NHC-supported palladium (I) dimers with bridging allyl, cyclopentadienyl, and indenyl ligands. Organometallics 32:5114–5127Google Scholar
  23. 23.
    Tanase T, Fukushima T, Nomura T, Yamamoto Y, Kobayashi K (1994) Synthesis and characterization of binuclear palladium (I) complexes of isocyanides with phenyl-substituted cyclopentadienyl and tris (pyrazol-1-yl) borate ligands. Inorg Chem 33(1):32–39Google Scholar
  24. 24.
    Sui-Seng C, Enright GD, Zargarian D (2006) New palladium (II)-(η3/5 or η1-Indenyl) and dipalladium (I)-(μ, η3-Indenyl) complexes. J Am Chem Soc 128:6508–6519PubMedGoogle Scholar
  25. 25.
    Michael P, Mingos D (1996) Synthesis and structural characterisation of [Pd 2 (Á-Br) 2 (PBu t 3) 2], an example of a palladium(I)–palladium(I) dimer. J Chem Soc Dalton Trans 23:4313–4314Google Scholar
  26. 26.
    Proutiere F, Lyngvi E, Aufiero M, Sanhueza IA, Schoenebeck F (2014) Combining the reactivity properties of PCy3 and PtBu3 into a single ligand, P(iPr)(tBu)2. Reaction via mono- or bisphosphine palladium(0) centers and palladium(I) dimer formation. Organometallics 33:6879–6884Google Scholar
  27. 27.
    Beck R, Johnson SA (2013) Dinuclear Ni(I)–Ni(I) complexes with syn-facial bridging ligands from Ni(I) precursors or Ni(II)/Ni(0) comproportionation. Organometallics 32:2944–2951Google Scholar
  28. 28.
    Wang H, Sun S, Wang H, King RB (2016) Binuclear cyclooctatetraene–iron carbonyl complexes: examples of fluxionality and valence tautomerism. N J Chem 40:1521–1528Google Scholar
  29. 29.
    Jin R, Chen X, Du Q, Feng H, Xie Y, King RB, Schaefer HF (2016) Binuclear iron carbonyl complexes of thialene. RSC Adv 6:82661–82668Google Scholar
  30. 30.
    Wang H, Sun Z, Xie Y, King RB, Schaefer HF III (2010) Unsaturation and variable hapticity in binuclear azulene iron carbonyl complexes. Organometallics 29:630–641Google Scholar
  31. 31.
    Zendaoui SM, Zouchoune B (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123–131Google Scholar
  32. 32.
    Zendaoui SM, Saillard JY, Zouchoune B (2016) Ten-electron donor indenyl anion in binuclear transition-metal sandwich complexes: electronic structure and bonding analysis. Chem Select 1(5):940–948Google Scholar
  33. 33.
    Zouchoune B, Zendaoui SM, Saillard JY (2018) Why is bis-indenylchromium a dimer? A DFT investigation. J Organomet Chem 858:47–52Google Scholar
  34. 34.
    Drideh S, Zouchoune B, Zendaoui SM, Saillard JY (2018) Electronic structure and structural diversity in indenyl in heterobinuclear transition-metal half-sandwich complexes. Theor Chem Acc 137(7):99Google Scholar
  35. 35.
    Nemdili H, Zouchoune B, Zendaoui SM, Ferhati A (2019) Structural, bonding and redox properties of 34-electron bimetallic complexes and their oxidized 32-and 33-electron and reduced 35-and 36-electron derivatives containing the indenyl fused π-system: a DFT overview. Polyhedron 160:219–228Google Scholar
  36. 36.
    Korichi H, Zouchoune F, Zendaoui SM, Zouchoune B, Saillard JY (2010) The coordination chemistry of azulene: a comprehensive DFT investigation. Organometallics 29:1693–1706Google Scholar
  37. 37.
    Merzoug M, Zouchoune B (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:69–78Google Scholar
  38. 38.
    Bensalem N, Zouchoune B (2016) Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 27(6):1781–1792Google Scholar
  39. 39.
    Naili N, Zouchoune B (2018) Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation. Struct Chem 29(3):725–739Google Scholar
  40. 40.
    ADF2016, SCM (2016) Theoretical chemistry. Vrije Universiteit, AmsterdamGoogle Scholar
  41. 41.
    Baerends EJ, Ellis DE, Ros PJCP (1973) Self-consistent molecular Hartree–Fock Slater calculations I. The computational procedure. Chem Phys 2:41–51Google Scholar
  42. 42.
    TeVelde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84–98Google Scholar
  43. 43.
    Guerra CF, Snijders JG, teVelde GT, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99(6):391–403Google Scholar
  44. 44.
    Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86Google Scholar
  45. 45.
    TeVelde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967Google Scholar
  46. 46.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211Google Scholar
  47. 47.
    Becke AD (1986) Density functional calculations of molecular bond energies. J Chem Phys 84:4524–4529Google Scholar
  48. 48.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100Google Scholar
  49. 49.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824Google Scholar
  50. 50.
    Perdew JP (1986) Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406Google Scholar
  51. 51.
    Salomon O, Reiher M, Hess BA (2002) Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set. J Chem Phys 117:4729–4737Google Scholar
  52. 52.
    Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652Google Scholar
  53. 53.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789Google Scholar
  54. 54.
    Versluis L, Ziegler T (1988) The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys 88:322–328Google Scholar
  55. 55.
    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005–9012Google Scholar
  56. 56.
    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Phys Chem 96:6937–6941Google Scholar
  57. 57.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096Google Scholar
  58. 58.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, CambridgeGoogle Scholar
  59. 59.
    Weinhold F, Glendening ED (2001) NBO 5.0 program manual: natural bond orbital analysis programs. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, MadisonGoogle Scholar
  60. 60.
    Zouchoune B, Saiad A (2018) Ligands’ σ-donation and π-backdonation effects on metal-metal bonding in trinuclear [M3(Tr)2(L)3]2 + (M = Fe, Ni, Pd, Pt, Tr = Tropylium and L = CO, HCN and C2H4) sandwich compounds: theoretical investigation. Inorg Chim Acta 473:204–215Google Scholar
  61. 61.
    Zouchoune B (2018) Stability and possible multiple metal-metal bonding in tetranuclear sandwich complexes of cyclooctatetraene ligand. Struct Chem 29:937–945Google Scholar
  62. 62.
    Fadli S, Zouchoune B (2017) Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes. Struct Chem 28:985–997Google Scholar
  63. 63.
    Benmachiche A, Zouchoune B (2019) Coordination and ligands’ effects in trinuclear [Pd3(COT)2(L)]2 + (L = H2O, CO, N2, HCN, HNC, NH3, PH3, PCl3, PF3, CS, CH2) sandwich complexes of cyclooctatetraene: theoretical investigation. Struct Chem 30:1–8Google Scholar
  64. 64.
    Yamamoto Y, Yamazaki H (1985) Dichlorotetrakis (isocyanide) dipalladium (I) containing a metal–metal bond. Bull Chem Soc Jpn 58:1843–1844Google Scholar
  65. 65.
    Yamamoto Y, Yamazaki H (1986) Studies on interactions of isocyanides with transition-metal complexes. X-ray crystal structure of dichlorobis (2, 6-dimethylphenyl isocyanide) bis (pyridine) dipalladium. Unusual carbon-nitrogen-carbon bond angles and infrared spectrum in bridging isocyanide groups. Inorg Chem 25(18):3327–3329Google Scholar
  66. 66.
    Holloway RG, Penfold BR, Colton R, McCormick MJ (1976) Crystal and molecular structure of bis-µ-(bisdiphenylphosphinomethane)-dibromodipalladium (Pd-Pd), a compound containing palladium (I). J Chem Soc Chem Commun 12:485–486Google Scholar
  67. 67.
    Kullberg ML, Lemke FR, Powell DR, Kubiak CP (1985) Palladium–palladium. Sigma bonds supported by bis(dimethylphosphino)methane (dmpm). Synthetic, structural, and Raman studies of Pd2X2(dmpm)2 (X = Cl, Br, OH). Inorg Chem 24:3589–3593Google Scholar
  68. 68.
    Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55:1236–1244Google Scholar
  69. 69.
    Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as. sigma. donors and. pi. acceptors. A theoretical study by the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1755–1759Google Scholar
  70. 70.
    Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper (1 +), silver (1 +), gold (1 +), platinum (0) or platinum (2 +) and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1558–1565Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie appliquée et Technologie des MatériauxUniversité Larbi Ben M’Hidi - Oum el BouaghiOum el BouaghiAlgeria
  2. 2.Unité de Recherche de Chimie de l’Environnement et Moléculaire StructuraleUniversité Constantine (Mentouri)ConstantineAlgeria

Personalised recommendations