DFT performance in the IQA energy partition of small water clusters

  • Fernando Jiménez-Grávalos
  • José Luis Casals-Sainz
  • Evelio Francisco
  • Tomás Rocha-Rinza
  • Ángel Martín Pendás
  • José Manuel Guevara-VelaEmail author
Regular Article


This paper addresses an assessment of the performance of a large set of exchange-correlation functionals in the description of hydrogen bonding within the interacting quantum atoms (IQA) energy partition. Specifically, we performed IQA analyses over a series of small water clusters \((\hbox {H}_{2}\hbox {O})_{{n}}\) with \(n \le 6\). Apart from LDA-like approximations, all the considered families of exchange-correlation functionals (GGA, meta-GGA, and hybrid) reproduce the trends associated with hydrogen bond non-additive effects computed with reference Møller–Plesset and coupled cluster wave functions. In other words, the IQA energy partition together with most of the functionals addressed herein produce good results concerning the study of non-additivity in hydrogen bonds at a reduced cost as compared with correlated wave functions approximations. These conditions might be further exploited in the examination of larger hydrogen-bonded complexes.


Quantum theory of atoms in molecules Interacting quantum atoms Density functional theory 



We thank the Spanish MINECO, Grant MICINN PGC2018-095953-B-l00, the FICyt, Grant IDI-2018-000177 and the European Union FEDER funds for financial support. F. J.-G. gratefully acknowledge financial support from the Spanish MINECO, Grant BES-2016-076986. T.R.R. acknowledges financial support from CONACyT/Mexico (Grant 253776).


  1. 1.
    Becke AD (2014) J Chem Phys 140:18A301PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yu HS, Li SL, Truhlar DG (2016) J Chem Phys 145:130901PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Galindo-Murillo R, Sandoval-Salinas ME, Barroso-Flores J (2014) J Chem Theory Comput 10:825–834PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289–320PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lupp D, Christensen NJ, Dethlefsen JR, Fristrup P (2015) Chem Eur J 21:3435–3442PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042CrossRefGoogle Scholar
  7. 7.
    Miranda-Quintana RA, Ayers PW (2019) Theor Chem Acc 138:44CrossRefGoogle Scholar
  8. 8.
    Franco-Pérez M, Polanco-Ramírez CA, Gázquez JL, Ayers PW (2018) J Mol Model 24:285PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cortés-Guzmán F, Bader R (2005) Coord Chem Rev 249:633–662CrossRefGoogle Scholar
  10. 10.
    Romero-Montalvo E, Guevara-Vela JM, Narváez WE, Costales A, Martín Pendá A, Hernández-Rodríguez M, Rocha-Rinza T (2017) Chem Commun 53:3516–3519CrossRefGoogle Scholar
  11. 11.
    Bader RFW, Beddall PM (1972) J Chem Phys 56:3320–3329CrossRefGoogle Scholar
  12. 12.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  13. 13.
    Gatti C, Cargnoni F, Bertini L (2003) J Comput Chem 24:422–436PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Popelier PLA (2016) Applications of topological methods in molecular chemistry. Springer, BerlinGoogle Scholar
  15. 15.
    Blanco MÁ, Pendás Á Martín, Francisco E (2005) J Chem Theory Comput 1:1096–1109PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Francisco E, Martín Pendás Á, Blanco MÁ (2006) J Chem Theory Comput 2:90–102PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Maxwell P, Martín Pendás Á, Popelier PLA (2016) Phys Chem Chem Phys 18:20986–21000PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Francisco E, Casals-Sainz JL, Rocha-Rinza T, Martín Pendás Á (2016) Theor Chem Acc 135:170CrossRefGoogle Scholar
  19. 19.
    Guevara-Vela J, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, MartínPendás Á, Rocha-Rinza T (2013) Chem Eur J 19:14304–14315PubMedCrossRefGoogle Scholar
  20. 20.
    Guevara-Vela J, Romero-Montalvo E, Mora Gómez V, Chávez-Calvillo R, García-Revilla M, Francisco E, Martín Pendás Á, Rocha-Rinza T (2016) Phys Chem Chem Phys 18:19557–19566PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ugalde JM, Alkorta I, Elguero J (2000) Angew Chem Int Ed 39:717–721CrossRefGoogle Scholar
  22. 22.
    Gillan MJ, Alfè D, Michaelides A (2016) J Chem Phys 144:130901PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Science 355:49–52PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bader R (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  25. 25.
    Segarra-Martí J, Merchan M, Roca-Sanjuan D (2012) J Chem Phys 136:244306PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  27. 27.
    Becke AD (1997) J Chem Phys 107:8554–8560CrossRefGoogle Scholar
  28. 28.
    Becke AD (1988) J Chem Phys 88:2547CrossRefGoogle Scholar
  29. 29.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  30. 30.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  31. 31.
    Handy NA, Cohen AJ (2001) Mol Phys 99:403–412CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  34. 34.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  35. 35.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117–124CrossRefGoogle Scholar
  40. 40.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  41. 41.
    Sun Q, Berkelbach TC, Blunt NS, Booth GH, Guo S, Li Z, Liu J, McClain JD, Sayfutyarova ER, Sharma S, Wouters S, Chan GK-L (2018) Wiley Interdiscip Rev Comput Mol Sci 8:e1340CrossRefGoogle Scholar
  42. 42.
    Martín Pendás Á, Francisco E. Promolden. A QTAIM/IQA code (unpublished)Google Scholar
  43. 43.
    Hunter JD (2007) Comput Sci Eng 9:90–95CrossRefGoogle Scholar
  44. 44.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Müller A (1984) Phys Lett A 105:446–452CrossRefGoogle Scholar
  46. 46.
    Thirman J, Head-Gordon M (2014) J Phys Chem Lett 5:1380–1385PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical and Analytical ChemistryUniversidad de OviedoOviedoSpain
  2. 2.Institute of ChemistryNational Autonomous University of MexicoMexico CityMexico

Personalised recommendations