Advertisement

Theoretical Chemistry Accounts

, 138:122 | Cite as

Theoretical study of the stability and NMR spectroscopic properties of vanadium(V) complexes

  • Lisset Noriega
  • María Eugenia Castro
  • Jose Manuel Perez-Aguilar
  • Norma A. Caballero
  • Thomas Scior
  • Ramsés E. Ramírez
  • Enrique González-Vergara
  • Francisco Javier MeléndezEmail author
Regular Article
  • 5 Downloads
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

Several vanadium(V) complexes have been investigated as possible antidiabetic and anticancer therapeutic agents. Among these, vanadium(V) complexes linked to tridentate ONO Schiff bases stand out for their potential in the treatment for cancer. However, further studies are necessary in order to learn about their specific action at the cellular level. We investigate structural and spectroscopic properties of these particular complexes, which are formed by a Schiff base linked to a [VO2]+ ion that contains different functional groups. Molecular structure optimizations of these vanadium-containing complexes were performed by the ONIOM (QM1:QM2) method, where the high layer (complexes) were described by density functional theory methods whereas the low layer (eight water molecules) were described by the HF approach. Various solvation models were utilized; however, the introduction of both implicit (using a solvation model based on density, SMD) and explicit (eight water molecules) solvation improves the stability of the systems. Interestingly, we found that the location of the explicit water molecules in the different octahydrated vanadium complexes was conserved surrounding the oxo-vanadate moiety. A detailed analysis of the chemical shift (δ) values for 1H, 13C and 51V is presented based on the ONIOM optimized geometries using the gauge-independent atomic orbital methodology. For obtaining accurately chemical shifts, the complete basis set using the correlation-consistent Dunning basis sets from double-ξ to quadruple-ξ and the Ahlrichs basis set were utilized. The results from the methodology presented here are consistent with those reported experimentally for 1H. Again, the inclusion of explicit water molecules in the inner solvation shell during the calculation of the chemical shifts was crucial. The analysis of solvation energies also indicates the relevance of including explicit water molecules as the main stabilization factor suggesting the central role of intermolecular interaction in the stability of the metallic complexes. From this analysis, a possible vanadium complex candidate for further evaluation in the cellular environment is suggested. This work not only provides evidence of a suitable methodology for studying the structural and spectroscopic properties of vanadium complexes but also highlights the relevance of explicitly including water molecules in their inner shell.

Keywords

Vanadium(V) complexes Schiff bases NMR spectroscopy ONIOM method CBS limit Solvent effect 

Notes

Acknowledgements

L. Noriega thanks CONACYT (Mexico) for financial support (Ph.D. fellowship CVU: 697889). The authors thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México, the CONACYT network of national laboratories, the computer resources of the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa, and the Project 100256733-VIEP 2019 (VIEP-BUAP, Mexico) as well as the PRODEP Academic Group BUAP-CA-263 (SEP, Mexico).

Supplementary material

214_2019_2509_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 70 kb)

References

  1. 1.
    Pessoa JC, Etcheverry S, Gambino D (2015) Vanadium compounds in medicine. Coord Chem Rev 301–302:24–48CrossRefGoogle Scholar
  2. 2.
    Urquiola C, Vieites M, Aguirre G, Marín A, Solano B, Arrambide G, Nobñía P, Lavaggi ML, Torre MH, González M, Monge A, Gambino D, Cerecetto H (2006) Improving anti-trypanosomal activity of 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives by complexation with vanadium. Bioor Med Chem 14–16:5503–5509CrossRefGoogle Scholar
  3. 3.
    Patel MN, Patel SH, Chhasatia MR, Parmar PA (2008) Five-coordinated oxovanadium(IV) complexes derived from amino acids and ciprofloxacin: synthesis, spectral, antimicrobial, and DNA interaction approach. Bioorg Med Chem Lett 18:6494–6500CrossRefGoogle Scholar
  4. 4.
    Rivadeneira J, Barrio DA, Arrambide G, Gambino D, Bruzzone L, Echeverry SB (2009) Biological effects of a complex of vanadium(V) with salicyladehyde semicarbazone in osteoblasts in culture: mehcanism of action. J Inorg Biochem 103:633–642CrossRefGoogle Scholar
  5. 5.
    Bishayee A, Waghray A, Patel MA, Chatterjee M (2010) Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 294:1–12CrossRefGoogle Scholar
  6. 6.
    Gambino D (2011) Potentiality of vanadium compounds as anti-parasitic agents. Coord Chem Rev 255:2193–2203CrossRefGoogle Scholar
  7. 7.
    Crans DC, Tarlton ML, McLauchlan CC (2014) Trigonal bipyramidal or square pyramidal coordination geometry? Investigating the most potent geometry for vanadium phosphatase inhibitors. Eur J Inorg Chem 27:4450–4468CrossRefGoogle Scholar
  8. 8.
    Banerjee S, Dixit A, Karande AA, Chakravarty AR (2016) Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium(IV) complexes having vitamin-B6 and acridinyl moieties. Dalton Trans 45:783CrossRefGoogle Scholar
  9. 9.
    Bijelic A, Aureliano M, Rompel A (2018) The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chem Commun 54:1153CrossRefGoogle Scholar
  10. 10.
    Zhou QC, Wang TR, Li H, Chen L, Xin JJ, Guo S, Sheng GH, You ZL (2019) Synthesis, crystal structures and insulin-like activity of three new oxidovanadium(V) complexes with aroylhydrazone ligand. J Inorg Biochem 196:110680CrossRefGoogle Scholar
  11. 11.
    El-Deen IM, Shoair AF, El-Bindary MA (2019) Synthesis, characterization and biological properties of oxovanadium(IV) complexes. J Mol Struct 1180:420–437CrossRefGoogle Scholar
  12. 12.
    Ebrahimipour SY, Sheikhshoaie I, Kautz AC, Ameri M, Pasban-Aliabadi H, Rudbari HA, Bruno G, Janiak C (2015) Mono-and dioxido-vanadium(V) complexes of tridentate ONO Schiff base ligand: synthesis, spectral characterization, X-ray structure, and anticancer activity. Polyhedron 93:99–105CrossRefGoogle Scholar
  13. 13.
    Ronconi L, Sadler PJ (2008) Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coord Chem Rev 252:2239–2277CrossRefGoogle Scholar
  14. 14.
    Rehder D (2008) Vanadium NMR of organovanadium complexes. Coord Chem Rev 252:2209–2222CrossRefGoogle Scholar
  15. 15.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian 98. 1. The calculation of energies, gradients and vibrational frequencies and electric field derivatives. J Mol Struct (Theochem) 462:1–21.  https://doi.org/10.1016/s0166-1280(98)00475-8 CrossRefGoogle Scholar
  16. 16.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  17. 17.
    Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69CrossRefGoogle Scholar
  18. 18.
    Peterson KA, Woon DE, Dunning TH Jr (1994) Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2 → H2 + H reaction. J Chem Phys 100:7410–7415CrossRefGoogle Scholar
  19. 19.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  20. 20.
    Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  21. 21.
    Miliordos E, Aprà E, Xantheas SS (2014) Benchmark theoretical study of the ππ binding energy in the benzene dimer. J Phys Chem A 118:7568–7578CrossRefGoogle Scholar
  22. 22.
    He N, Li ZH (2016) Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature. Phys Chem Chem Phys 8:10005–10017CrossRefGoogle Scholar
  23. 23.
    Jorgensen KR, Cadena M (2018) Theoretical study of bromide halocarbons: accurate enthalpies of formation. Comp Theor Chem 1141:66–73CrossRefGoogle Scholar
  24. 24.
    Kupka T, Ruscic B, Botto RE (2002) Toward hartree-fock- and density functional complete basis-set-predicted NMR parameters. J Phys Chem A 106:10396–10407CrossRefGoogle Scholar
  25. 25.
    Kupka T (2008) From correlation-consistent to polarization-consistent basis sets estimation of NMR spin–spin coupling constant in the B3LYP Kohn–Sham basis set limit. Chem Phys Lett 461:33–37CrossRefGoogle Scholar
  26. 26.
    Kupka T, Lim C (2007) Polarization-consistent versus correlation-consistent basis sets in predicting molecular and spectroscopic properties. J Phys Chem A 111:1927–1932CrossRefGoogle Scholar
  27. 27.
    Melendez FJ, Castro ME, Perez-Aguilar JM, Caballero NA, Noriega L, González-Vergara E (2018) Computational study of aqueous solvation of vanadium(V) complexes. In: Conference proceedings of international supercomputing conference in México (ISUM 2018), vol CCIS 948. Springer, BerlinGoogle Scholar
  28. 28.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  30. 30.
    Jeffrey HP, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:299–310CrossRefGoogle Scholar
  31. 31.
    Zhang RB, Ai XC, Zhang XK, Zhang QY (2004) Solvent effects on the excited state properties of 2-aminopurine—a theoretical study by the ONIOM and supramolecular method. J Mol Struct (Theochem) 680:21–27CrossRefGoogle Scholar
  32. 32.
    Da Silva EF, Svendsen HF, Merz KM (2009) Explicitly representing the solvation shell in continuum solvent calculations. J Phys Chem A 113(22):6404–6409CrossRefGoogle Scholar
  33. 33.
    Pedone A, Bloino J, Monti S, Prampolini G, Barone V (2010) Absorption and emission UV–Vis spectra of the TRITC fluorophore molecule in solution: a quantum mechanical study. Phys Chem Chem Phys 12:1000–1006CrossRefGoogle Scholar
  34. 34.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  35. 35.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford, CTGoogle Scholar
  37. 37.
    X-ray crystallographic data from http://www.ccdc.cam.ac.uk/ (last accessed Jan 17, 2017) or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK
  38. 38.
    Sheppard BJH, Shaver MP, Pearson JK (2015) Assessment and application of density functional theory for the prediction of structure and reactivity of vanadium complexes. J Phys Chem A 119:8537–8546CrossRefGoogle Scholar
  39. 39.
    Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  40. 40.
    Melendez FJ, Degollado A, Castro ME, Caballero NA, Guevara-García JA, Scior T (2014) Theoretical study of the structure, IR and NMR of the bis-peroxo-oxovanadate species containing-histidine peptides. Inorg Chim Acta 420:149–158CrossRefGoogle Scholar
  41. 41.
    Maurya MR, Kumar A, Bhat AR, Azam A, Bader C, Rehder D (2006) Dioxo- and oxovanadium(V) complexes of thiohydrazone ONS donor ligands: synthesis, characterization, reactivity, and atiamoebic activity. Inorg Chem 45:1260–1269CrossRefGoogle Scholar
  42. 42.
    Kwiatkowski E, Romanowski G, Nowicki W, Kwiatkowski M, Suwinska K (2003) Dioxovanadium(V) Schiff base complexes of N-methyl-1,2-diaminoethane and 2-methyl-1,2-diaminopropane with aromatic o-hydroxyaldehydes and o-hydroxyketones: synthesis, characterization, catalytic properties and structure. Polyhedron 22:1009–1018CrossRefGoogle Scholar
  43. 43.
    Lippold I, Becher J, Klemm D, Plass W (2009) Chiral oxovanadium(V) complexes with a 6-amino-6-deoxyglucopyranoside-based Schiff-base ligand: catalytic asymmetric sulfoxidation and structural characterization. J Mol Catal A Chem 299:12–17CrossRefGoogle Scholar
  44. 44.
    Maurya MR, Kumar A, Ebel M, Rehder D (2006) Synthesis, characterization, reactivity, and catalytic potential of model Vanadium(IV, V) complexes with benzimidazole-derived ONN donor ligands. Inorg Chem 45:5924–5937CrossRefGoogle Scholar
  45. 45.
    Romanowski G, Wera M (2010) Mononuclear and dinuclear chiral vanadium(V) complexes with tridentate Schiff bases derived from R(-)-1,2-diaminopropane: synthesis, structure, characterization and catalytic properties. Polyhedron 29:2747–2754CrossRefGoogle Scholar
  46. 46.
    Guevara G, Behrens NB, Contreras R, Mendoza D (1998) In: Tracey S, Crans DC (eds) Vanadium compounds. chemistry, biochemistry, and therapeutic applications, vol 711. American Chemical Society, Washington, DC, p 126CrossRefGoogle Scholar
  47. 47.
    Cramer CJ, Truhlar DG (1999) Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 99(8):2161–2200CrossRefGoogle Scholar
  48. 48.
    Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113(14):4501–4507CrossRefGoogle Scholar
  49. 49.
    Caravan P, Gelmini L, Glober N, Herring FG, Li H, McNeill JH, Rettig SJ, Setyawati IA, Shuter E, Sun Y, Tracey AS, Yuen VG, Orvig C (1995) Reaction chemistry of BMOV, bis(maltolato)oxovanadium(IV)—a potent insulin mimetic agent. J Am Chem Soc 117:12759–12770CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lisset Noriega
    • 1
  • María Eugenia Castro
    • 2
  • Jose Manuel Perez-Aguilar
    • 1
  • Norma A. Caballero
    • 3
  • Thomas Scior
    • 4
  • Ramsés E. Ramírez
    • 5
  • Enrique González-Vergara
    • 2
  • Francisco Javier Meléndez
    • 1
    Email author
  1. 1.Lab. de Química Teórica, Centro de Investigación, Depto. de Fisicoquímica, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Centro de Química, Instituto de CienciasBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Facultad de Ciencias BiológicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  4. 4.Depto. de Farmacia, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  5. 5.Depto. de Fisicomatemáticas, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations