Advertisement

Theoretical Chemistry Accounts

, 138:105 | Cite as

DFT study of two-photon absorption of octupolar molecules

  • Anissa Amar
  • Abdou BoucekkineEmail author
  • Frédéric Paul
  • Olivier Mongin
Regular Article

Abstract

The two-photon absorption (TPA) properties of octupolar molecules based on a triphenyl-isocyanurate cyclotrimer, a 1,3,5-triphenyl-benzene or a triphenyl-triazine core were theoretically investigated using DFT and TD-DFT computations. These compounds are very promising regarding their potential application, especially for optical limitation. These systems, which exhibit a threefold axis, contain three arms with a terminal electron-donating group linked in 1, 3 and 5 positions to the central C3N3O3 isocyanurate, benzene or triazine ring. The SAOP functional and a DZP basis set were selected for the TPA computations. The so-computed TPA energies and cross sections are in good agreement with the observed data. Increasing the strength of the donor terminal group enhances the TPA cross section values. The compound with triazine core presents the highest two-photon cross section value compared to the values found for the isocyanurate or the 1,3,5-phenyl core as central ring. Furthermore, this study brings to light a cooperative enhancement of the TPA property between the three arms attached to the isocyanurate ring.

Keywords

Two-photon absorption DFT TD-DFT SAOP Triphenyl-isocyanurate 

Notes

Acknowledgements

The authors are grateful to Prof. Lasse Jensen for his help regarding TPA calculations using the AORESPONSE module of ADF2017. The financial support of ANR (Isogate Project) is acknowledged as well as GENCI-IDRIS and GENCI-CINES for an allocation of computing time (Grant No. 2017-2018-080649).

Supplementary material

214_2019_2494_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 60 kb)

References

  1. 1.
    Göppert-Mayer M (1931) Ann Phys (Leipzig) 9:273–294CrossRefGoogle Scholar
  2. 2.
    Kaiser W, Garret CGB (1961) Phys Rev Lett 7:229–231CrossRefGoogle Scholar
  3. 3.
    He GS, Tan L-S, Zheng Q, Prasad PN (2008) Chem Rev 108:1245–1330CrossRefGoogle Scholar
  4. 4.
    Kim H M, Cho B R (2009) Chem Commun pp 153–164Google Scholar
  5. 5.
    Parthenopoulos DA, Rentzepis PM (1989) Science 245:843–845CrossRefGoogle Scholar
  6. 6.
    Belfield KD, Ren X, Van Stryland EW, Hagan DJ, Dubikovski V, Meisak EJ (2000) J Am Chem Soc 122:1217–1219CrossRefGoogle Scholar
  7. 7.
    Denk W, Strickler JH, Webb WW (1990) Science 248:73–76CrossRefGoogle Scholar
  8. 8.
    Kohler RH, Cao J, Zipfel WR, Webb WW, Hansen MR (1997) Science 276:2039–2042CrossRefGoogle Scholar
  9. 9.
    Bhawalkar JD, He GS, Prasad PN (1996) Rep Prog Phys 59:1041–1070CrossRefGoogle Scholar
  10. 10.
    Spangler CW (1999) J Mater Chem 9:2013–2020CrossRefGoogle Scholar
  11. 11.
    Dini D, Calvete MJF, Hanack M (2016) Chem Rev 116:13043–13233CrossRefGoogle Scholar
  12. 12.
    Zhongwei H, Autschbach J, Jensen L (2016) J Chem Theory Comput 12:1294–1304CrossRefGoogle Scholar
  13. 13.
    Beerepoot MTP, Friese DH, List NH, Kongstedb J, Ruuda K (2015) Phys Chem Chem Phys 17:19306–19314CrossRefGoogle Scholar
  14. 14.
    Beerepoot MTP, Alam MM, Bednarska J, Bartkowiak W, Ruud K, Zaleśny R (2018) J Chem Theory Comput 14:3677–3685CrossRefGoogle Scholar
  15. 15.
    Nayyar IH, Masunov AE, Tretiak S (2013) J Phys Chem 117:18170–18189Google Scholar
  16. 16.
    Alam MM, Daniel C (2016) Theor Chem Acc 135:41CrossRefGoogle Scholar
  17. 17.
    Liu X-T, Zou L-Y, Ren A-M, Guo J-F, Sun Y, Huang S, Feng J-K (2011) Theor Chem Acc 130:37–50CrossRefGoogle Scholar
  18. 18.
    Nguyen KA, Day PN, Pachter R (2008) Theor Chem Acc 120:167–175CrossRefGoogle Scholar
  19. 19.
    Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Adv Mater 20:4641–4678CrossRefGoogle Scholar
  20. 20.
    Abe M, Chitose Y, Jakkampudi S, Thuy PTT, Lin Q, Van BT, Yamada A, Oyama R, Sasaki M, Ktan C (2017) Synthesis 49:3337–3346CrossRefGoogle Scholar
  21. 21.
    Sengul O, Boydas EB, Pastore M, Sharmouk W, Gros PC, Catak S, Monari A (2017) Theor Chem Acc 136:67CrossRefGoogle Scholar
  22. 22.
    Yan L-K, Pomogaeva A, Gu F-L, Aoki Y (2010) Theor Chem Acc 125:511–520CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Guo J-F, Ren A-M, Feng J-K (2011) Theor Chem Acc 128:265–274CrossRefGoogle Scholar
  24. 24.
    Argouarch G, Veillard R, Roisnel T, Amar A, Boucekkine A, Singh A, Ledoux I, Paul F (2011) New J Chem 35:2409–2411CrossRefGoogle Scholar
  25. 25.
    Argouarch G, Veillard R, Roisnel T, Amar A, Meghezzi H, Boucekkine A, Hugues V, Mongin O, Blanchard-Desce M, Paul F (2012) Chem Eur J 18:11811–11827CrossRefGoogle Scholar
  26. 26.
    Streatfield SL, Pradels C, Ndimba AN, Richy N, Amar A, Boucekkine A, Cifuentes MP, Humphrey MG, Mongin O, Paul F (2017) Chem Select 2:8080–8085Google Scholar
  27. 27.
    Triadon A, Ndimba AN, Richy N, Amar A, Boucekkine A, Roisnel T, Cifuentes MP, Humphrey MG, Blanchard-Desce M, Mongin O, Paul F (2018) New J Chem 42:11289–11293CrossRefGoogle Scholar
  28. 28.
    Pokladek Z, Dudek M, Mongin O, Métivier R, Mlynarz P, Samoc M, Matczyszyn K, Paul F (2017) Chem Plus Chem 82:1372–1383Google Scholar
  29. 29.
    ADF Amsterdam Density Functional (2018) Scientific Computing & Modelling: Amsterdam. http://www.scm.com
  30. 30.
    Schipper PRT, Gritsenko OV, van Gisbergen SJA, Baerends EJJ (2000) Chem Phys 112:1344–1352Google Scholar
  31. 31.
    Jensen L, van Duijnen PT, Snijders JGJ (2003) Chem Phys 119:12998–13006Google Scholar
  32. 32.
    Adamo C, Barone V (1998) J Chem Phys 108:664–675CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09. Revision D.01 Edition. Gaussian Inc., Wallingford, CTGoogle Scholar
  34. 34.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  35. 35.
    Jensen L, Autschbach J, Schatz GC (2005) J Chem Phys 122:224Google Scholar
  36. 36.
    Hu Z, Autschbach J, Jensen L (2014) J Chem Phys 141:124305CrossRefGoogle Scholar
  37. 37.
    Silverstein DW, Jensen L (2012) J Chem Phys 136:064111CrossRefGoogle Scholar
  38. 38.
    Alam MdM, Bolze F, Daniel C, Flamigni L, Gourlaouen C, Heitz V, Jenni S, Schmitt J, Sour A, Ventura B (2016) Phys Chem Chem Phys 18:21954–21965CrossRefGoogle Scholar
  39. 39.
    Cui Y-Z, Fang Q, Xue G, Xu G-B, Yin L, Yuy W-T (2005) Chem Lett 34:644–645CrossRefGoogle Scholar
  40. 40.
    Beljonne D, Wenseleers W, Zojer E, Shai Z, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Adv Funct Mater 12:631–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anissa Amar
    • 1
  • Abdou Boucekkine
    • 2
    Email author
  • Frédéric Paul
    • 2
  • Olivier Mongin
    • 2
  1. 1.Faculté des Sciences, Département de ChimieUMMTOTizi-OuzouAlgeria
  2. 2.Univ Rennes, CNRS ISCR – UMR 6226RennesFrance

Personalised recommendations