Skip to main content
Log in

The possibility of cadmium extraction to the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate in the presence of hydrochloric acid: a molecular dynamics study of the water–IL interface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrophobic ionic liquids (ILs) can form biphasic systems with aqueous media and are appropriate candidates for liquid–liquid extraction (LLE). In this study, a biphasic system composed of water and the hydrophobic IL, 1-hexyl-3-methylimidazolium hexafluorophosphate, [HMIM][PF6] was studied using molecular dynamics (MD) simulation to understand the molecular-level distribution of the heavy metal cadmium ions, Cd2+, in the water–IL biphasic system in the presence of hydrochloric acid. The experimentally observed positive effect of adding chloride to the aqueous phase on the metal extraction was studied at the molecular scale. Particularly, the effect of hydrochloric acid addition on the solubility of the IL cations and anions in the water was investigated. It was found that with adding hydrochloric acid (1 M) to the water phase, the IL cation solubility in water decreased; however, the IL anion solubility almost did not change. This can affect the extraction process of the metal ions. Moreover, it was found that during the [CdCl4]2− migration to the IL phase, a gradual breaking of the hydrogen bonds occurs between the complex and the water molecules at the interface. Therefore, quantum mechanics (QM) calculations were performed to explain the interaction energies of the cadmium complex with water and the IL. The calculated interaction energy of the ternary complex of IL–[CdCl4]2−–H2O was found to be greater than that of the binary complexes of IL–[CdCl4]2− and H2O–[CdCl4]2−. The results obtained in this work give some insights into the behaviour of the IL-based extraction systems in contact with aqueous solutions containing salts or mineral acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Janssen CH, Macías-Ruvalcaba NA, Aguilar-Martínez M, Kobrak MN (2015) Metal extraction to ionic liquids: the relationship between structure, mechanism and application. Int Rev Phys Chem 34:591–622

    Article  CAS  Google Scholar 

  2. Wankowski JL (2017) Fundamental studies of metal ion extraction into ionic liquids by macrocyclic polyethers. Ph.D. thesis, The University of Wisconsin-Milwaukee

  3. Wellens S (2014) Ionic liquid technology in metal refining: dissolution of metal oxides and separation by solvent extraction. Ph.D. thesis, The Queen’s University Belfast, UK

  4. Villemin D, Didi M (2014) Extraction of rare earth and heavy metals using ionic solvents as extraction medium (A Review). Orient J Chem 29:1267–1284

    Article  Google Scholar 

  5. Stojanovic A, Keppler BK (2012) Ionic liquids as extracting agents for heavy metals. Sep Sci Technol 47:189–203

    Article  CAS  Google Scholar 

  6. Atilhan M, Aparicio S (2018) Molecular dynamics simulations of metal nanoparticles in deep eutectic solvents. J Phys Chem C 122:18029–18039

    Article  CAS  Google Scholar 

  7. Popov K, Vendilo A, Pletnev I, Lajunen M, Rönkkömäki H, Lajunen LH (2011) Kokorin A (ed) Chapter 20. Formation of complexes in RTIL and ion separations. In: Ionic liquids: theory, properties, new approaches. InTech

  8. de los Ríos AP, Hernandez-Fernandez F, Lozano L, Sanchez S, Moreno J, Godinez C (2009) Removal of metal ions from aqueous solutions by extraction with ionic liquids. J Chem Eng Data 55:605–608

    Article  Google Scholar 

  9. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  10. Vidal ST, Neiva Correia MJ, Marques MM, Ismael MR, Angelino Reis MT (2004) Studies on the use of ionic liquids as potential extractants of phenolic compounds and metal ions. Sep Sci Technol 39:2155–2169

    Article  CAS  Google Scholar 

  11. McDaniel JG, Choi E, Son CY, Schmidt J, Yethiraj A (2016) Ab initio force fields for imidazolium-based ionic liquids. J Phys Chem B 120:7024–7036

    Article  CAS  Google Scholar 

  12. McDaniel JG, Son CY, Yethiraj A (2018) Ab initio force fields for organic anions: properties of [BMIM][TFSI], [BMIM][FSI], and [BMIM][OTf] ionic liquids. J Phys Chem B 122:4101–4114

    Article  CAS  Google Scholar 

  13. Canongia Lopes JN, Pádua AA (2012) CL&P: a generic and systematic force field for ionic liquids modeling. Theor Chem Acc 131:1129

    Article  Google Scholar 

  14. Canongia Lopes JN, Pádua AA (2006) Using spectroscopic data on imidazolium cation conformations to test a molecular force field for ionic liquids. J Phys Chem B 110:7485–7489

    Article  Google Scholar 

  15. Canongia Lopes JN, Deschamps J, Pádua AA (2004) Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B 108:2038–2047

    Article  Google Scholar 

  16. Hunt PA (2006) The simulation of imidazolium-based ionic liquids. Mol Simul 32:1–10

    Article  CAS  Google Scholar 

  17. Pouramini Z, Mohebbi A, Kowsari MH (2017) Atomistic insights into the thermodynamics, structure, and dynamics of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate via molecular dynamics study. J Mol Liq 246:39–47

    Article  CAS  Google Scholar 

  18. Cervinka C, Padua AA, Fulem M (2016) Thermodynamic properties of selected homologous series of ionic liquids calculated using molecular dynamics. J Phys Chem B 120:2362–2371

    Article  CAS  Google Scholar 

  19. Migliorati V, Serva A, Aquilanti G, Pascarelli S, D’Angelo P (2015) Local order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study. Phys Chem Chem Phys 17:16443–16453

    Article  CAS  Google Scholar 

  20. Androulaki E, Vergadou N, Ramos J, Economou IG (2012) Structure, thermodynamic and transport properties of imidazolium-based bis (trifluoromethylsulfonyl) imide ionic liquids from molecular dynamics simulations. Mol Phys 110:1139–1152

    Article  CAS  Google Scholar 

  21. Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2009) Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients. J Chem Phys 130:014703

    Article  CAS  Google Scholar 

  22. Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2008) Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys 129:224508

    Article  CAS  Google Scholar 

  23. Kowsari MH, Alavi S, Najafi B, Gholizadeh K, Dehghanpisheh E, Ranjbar F (2011) Molecular dynamics simulations of the structure and transport properties of tetrabutylphosphonium amino acid ionic liquids. Phys Chem Chem Phys 13:8826–8837

    Article  CAS  Google Scholar 

  24. Kowsari MH, Ebrahimi S (2018) Capturing the effect of [PF3(C2F5)3] vs. [PF6], flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of [bmim]+-based ionic liquids: a comparative MD study. Phys Chem Chem Phys 20:13379–13393

    Article  CAS  Google Scholar 

  25. Kowsari MH, Fakhraee M, Alavi S, Najafi B (2014) Molecular dynamics and ab initio studies of the effects of substituent groups on the thermodynamic properties and structure of four selected imidazolium-based [Tf2N] ionic liquids. J Chem Eng Data 59:2834–2849

    Article  CAS  Google Scholar 

  26. Kowsari MH, Fakhraee M (2015) Influence of butyl side chain elimination, tail amine functional addition, and C2 methylation on the dynamics and transport properties of imidazolium-based [Tf2N] ionic liquids from molecular dynamics simulations. J Chem Eng Data 60:551–560

    Article  CAS  Google Scholar 

  27. Kapoor U, Shah JK (2018) Thermophysical properties of imidazolium-based binary ionic liquid mixtures using molecular dynamics simulations. J Chem Eng Data 63:2512–2521

    Article  CAS  Google Scholar 

  28. Vergadou N, Androulaki E, Economou IG (2017) Papadopoulos AI, Seferlis P (ed) Chapter 3. Molecular simulation methods for CO2 capture and gas separation with emphasis on ionic liquids. In: Process systems and materials for CO2 capture.Wiley, Hoboken

  29. Nickerson SD, Nofen EM, Chen H, Ngan M, Shindel B, Yu H, Dai LL (2015) A combined experimental and molecular dynamics study of iodide-based ionic liquid and water mixtures. J Phys Chem B 119:8764–8772

    Article  CAS  Google Scholar 

  30. Perez-Blanco ME, Maginn EJ (2011) Molecular dynamics simulations of carbon dioxide and water at an ionic liquid interface. J Phys Chem B 115:10488–10499

    Article  CAS  Google Scholar 

  31. Konieczny JK, Szefczyk B (2015) Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water a molecular dynamics study. J Phys Chem B 119:3795–3807

    Article  CAS  Google Scholar 

  32. D’Angelo P, Serva A, Aquilanti G, Pascarelli S, Migliorati V (2015) Structural properties and aggregation behaviour of 1-hexyl-3-methylimidazolium iodide in aqueous solutions. J Phys Chem B 119:14515–14526

    Article  Google Scholar 

  33. Chen M, Pendrill R, Widmalm G, Brady JW, Wohlert J (2014) Molecular dynamics simulations of the ionic liquid 1-n-butyl-3-methylimidazolium chloride and its binary mixtures with ethanol. J Chem Theory Comput 10:4465–4479

    Article  CAS  Google Scholar 

  34. D’Angelo P, Zitolo A, Aquilanti G, Migliorati V (2013) Using a combined theoretical and experimental approach to understand the structure and dynamics of imidazoliumbased ionic liquids/water mixtures. 2. EXAFS spectroscopy. J Phys Chem B 117:12516–12524

    Article  Google Scholar 

  35. Ramya K, Kumar P, Kumar A, Venkatnathan A (2014) Interplay of phase separation, tail aggregation, and micelle formation in the nanostructured organization of hydrated imidazolium ionic liquid. J Phys Chem B 118:8839–8847

    Article  CAS  Google Scholar 

  36. Jahangiri S, Taghikhani M, Behnejad H, Ahmadi S (2008) Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: a molecular dynamic simulation. Mol Phys 106:1015–1023

    Article  CAS  Google Scholar 

  37. Cocalia VA, Gutowski KE, Rogers RD (2006) The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord Chem Rev 250:755–764

    Article  CAS  Google Scholar 

  38. Lynden-Bell R, Kohanoff J, Del Popolo M (2005) Simulation of interfaces between room temperature ionic liquids and other liquids. Faraday Discuss 129:57–67

    Article  CAS  Google Scholar 

  39. Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2010) Molecular dynamics study of congruent melting of the equimolar ionic liquid-benzene inclusion crystal [emim][NTf2] C6H6. J Chem Phys 132:044507

    Article  CAS  Google Scholar 

  40. Kowsari MH, Tohidifar L (2016) Tracing dynamics, self-diffusion, and nanoscale structural heterogeneity of pure and binary mixtures of ionic liquid 1-hexyl-2,3-dimethylimidazolium bis(fluorosulfonyl)imide with acetonitrile: insights from molecular dynamics simulations. J Phys Chem B 120:10824–10838

    Article  CAS  Google Scholar 

  41. Sieffert N, Chaumont A, Wipff G (2009) Importance of the liquid–liquid interface in assisted ion extraction: new molecular dynamics studies of cesium picrate extraction by a calix [4] arene. J Phys Chem C 113:10610–10622

    Article  CAS  Google Scholar 

  42. Sieffert N, Wipff G (2008) Adsorption at the liquid–liquid interface in the biphasic rhodium-catalyzed hydroformylation of 1-hexene in ionic liquids: a molecular dynamics study. J Phys Chem C 112:6450–6461

    Article  CAS  Google Scholar 

  43. Chaumont A, Wipff G (2007) Solvation of big spherical solutes in room temperature ionic liquids and at their aqueous interface: a molecular dynamics simulation study. J Mol Liq 131:36–47

    Article  Google Scholar 

  44. Sieffert N, Wipff G (2006) The [BMI][Tf2N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid–liquid interface. J Phys Chem B 110:13076–13085

    Article  CAS  Google Scholar 

  45. Chaumont A, Schurhammer R, Wipff G (2005) Aqueous interfaces with hydrophobic room temperature ionic liquids: a molecular dynamics study. J Phys Chem B 109:18964–18973

    Article  CAS  Google Scholar 

  46. Chevrot G, Schurhammer R, Wipff G (2006) Molecular dynamics simulations of the aqueous interface with the [BMI][PF6] ionic liquid: comparison of different solvent models. Phys Chem Chem Phys 8:4166–4174

    Article  CAS  Google Scholar 

  47. Chaumont A, Wipff G (2010) Strontium nitrate extraction to ionic liquids by a crown ether: a molecular dynamics study of aqueous interfaces with C4mim+-vs C8mim+-based ionic liquids. J Phys Chem B 114:13773–13785

    Article  CAS  Google Scholar 

  48. Biswas R, Ghosh P, Banerjee T, Ali SM (2018) Partitioning of Cs+ and Na+ ions by dibenzo-18-crown-6 ionophore in biphasic aqueous systems of octanol and ionic liquid. Radiochim Acta 106:477–495

    Article  CAS  Google Scholar 

  49. Biswas R, Pasumarthi V, Banerjee T, Ghosh P, Ali SM, Joshi JM (2017) Interfacial insights on the dibenzo-based crown ether assisted cesium extraction in [BMIM][Tf2N]–water binary system. J Radioanal Nucl Chem 311:427–438

    Article  CAS  Google Scholar 

  50. Shah JK, Maginn EJ (2014) Molecular simulation of ionic liquids: where we are and the path forward, ionic liquids further UnCOILed: critical expert overviews, pp 149–192

  51. Papaiconomou N, Cointeaux L, Chainet E, Iojoiu C, Billard I (2016) Uncertainty principle in the elucidation of the extraction mechanism of ions from aqueous towards ionic liquid phases. PtCl6 2− and [C1C8IM][NTf2] as a textbook case. ChemistrySelect 1:3892–3900

    Article  CAS  Google Scholar 

  52. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  Google Scholar 

  53. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  54. Ramya K, Kumar P, Venkatnathan A (2015) Molecular simulations of anion and temperature dependence on structure and dynamics of 1-hexyl-3-methylimidazolium ionic liquids. J Phys Chem B 119:14800–14806

    Article  CAS  Google Scholar 

  55. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  56. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:5300–5308

    Article  CAS  Google Scholar 

  57. Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  58. Kumar P, Prakash P, Ramya KR, Venkatnathan A (2018) Probing translational and rotational dynamics in hydrophilic/hydrophobic anion based imidazolium ionic liquid–water mixtures. Soft Matter 14:6109–6118

    Article  CAS  Google Scholar 

  59. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

  60. Li P, Roberts BP, Chakravorty DK, Merz KM (2013) Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput 9:2733–2748

    Article  CAS  Google Scholar 

  61. Schurhammer R, Wipff G (2007) Solvation of uranium hexachloro complexes in roomtemperature ionic liquids. A molecular dynamics investigation in two liquids. J Phys Chem B 111:4659–4668

    Article  CAS  Google Scholar 

  62. Bonthuis DJ, Mamatkulov SI, Netz RR (2016) Optimization of classical nonpolarizable force fields for OH and H3O+. J Chem Phys 144:104503

    Article  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02, Gaussian, Inc., Wallingford CT

  64. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  65. Aksimentiev A, Schulten K (2005) Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761

    Article  CAS  Google Scholar 

  66. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. J Chem Eng Data 52:1080–1085

    Article  CAS  Google Scholar 

  67. Li Y, Wang L, Cai S (2010) Mutual solubility of alkyl imidazolium hexafluorophosphate ionic liquids and water. J Chem Eng Data 55:5289–5293

    Article  CAS  Google Scholar 

  68. Cabeza O, García-Garabal S, Segade L, Domínguez-Pérez M, Rilo E, Varela LM (2011) Physical properties of binary mixtures of ILs with water and ethanol. A review. In: Ionic liquids: theory, properties, new approaches. InTech

  69. Mazan V, Boltoeva MY, Tereshatov EE, Folden CM III (2016) Mutual solubility of water and hydrophobic ionic liquids in the presence of hydrochloric acid. RSC Adv 6:56260–56270

    Article  CAS  Google Scholar 

  70. Dupont D, Depuydt D, Binnemans K (2015) Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. J Phys Chem B 119:6747–6757

    Article  CAS  Google Scholar 

  71. Schaeffer N, Passos H, Gras M, Mogilireddy V, Leal JP, Pérez-Sánchez G, Gomes JR, Billard I, Papaiconomou N, Coutinho JA (2018) Mechanism of ionic-liquid-based acidic aqueous biphasic system formation. Phys Chem Chem Phys 20:9838–9846

    Article  CAS  Google Scholar 

  72. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000-a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Article  Google Scholar 

  73. Maginn EJ (2009) 8 Atomistic simulation of ionic liquids. Rev Comput Chem 26:421–493

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shahid Bahonar University of Kerman and IASBS for computer resources and to M. Mirzaie, B. Makkiabadi, and A. Pouramini for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohebbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2019_2489_MOESM1_ESM.docx

The structure of [CdCl4]2- with atom labels (Fig. S1), the structure of H2O (SPC/E water model) (Fig. S2), vdW and electrostatic potential parameters of [CdCl4]2- and H2O (SPC/E water model) (Table S1), bond stretching potential parameters of [CdCl4]2- and H2O (SPC/E water model) (Table S2), angle bending potential parameters of [CdCl4]2- and H2O (SPC/E water model) (Table S3), molar fraction of IL in water in the biphasic system of water–IL at (a) 298 K and (b) 350 K (Fig. S3), the average electrostatic potential profiles of the water–IL biphasic system as a function of the z-distance from the interface at (a) 298 K and (b) 350 K (Fig. S4), molar fraction of IL in water in the biphasic system of water–IL containing [CdCl4]2− and hydrochloric acid, as a function of run-time at 350 K (Fig. S5), the molecular graphs indicating the bond critical points and the bond paths for H2O-[CdCl4]2-, IL-[CdCl4]2-, and IL-[CdCl4]2-–H2O complexes (Fig. S6), the time evolution of z-coordinates of six [CdCl4]2− ions with respect to the interface over 20 ns (58–78 ns) of 213 ns NVT simulation (Fig. S7), typical snapshot of the biphasic system of water–IL containing [CdCl4]2− ions at 350 K (Fig. S8). (DOCX 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouramini, Z., Mohebbi, A. & Kowsari, M.H. The possibility of cadmium extraction to the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate in the presence of hydrochloric acid: a molecular dynamics study of the water–IL interface. Theor Chem Acc 138, 99 (2019). https://doi.org/10.1007/s00214-019-2489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2489-z

Keywords

Navigation