Understanding structure of small \({\hbox {TiO}}_2\) nanoparticles and adsorption mechanisms of PbS quantum dots for solid-state applications: a combined theoretical and experimental study

  • T. G. Díaz-Rodríguez
  • M. Pacio
  • R. Agustín-Serrano
  • Héctor Juárez-Santiesteban
  • Jesús MuñizEmail author
Regular Article


A combined theoretical and experimental study on a series of \({\hbox {TiO}}_{2}\), lead sulfide (PbS) and PbS@TiO\(_{2}\) nanocomposites was performed. \({\hbox {TiO}}_{2}\) structures were stabilized with simulated annealing using molecular dynamics at the ReaxFF level. A density functional theory study elucidated relevant electronic structure properties. We performed the study for a series of \({\hbox {TiO}}_2\))\(_{n}\), where \(n =18\), 28, 38, 76 and 114. Band gaps ranging from 1.2 to 2.2 eV were found. This range was attributed to the size of the \({\hbox {TiO}}_2\) cluster models used in the calculations, and some models became metallic at smaller sizes. We synthesized \({\hbox {TiO}}_2\) nanoparticles of anatase (101) facet, which were characterized with pair distribution functions, in excellent agreement with the theoretical results. We explored the possibility to anchor a PbS quantum dot with a \({\hbox {TiO}}_2\) model system. This intermolecular interaction was relevant, since the composite material could be used in solid-state devices' applications, in which stability in the formation of the \({\hbox {PbS}}/{\hbox {TiO}}_{2}\) interface plays an important role for the device performance. The possibility to form a PbS@TiO\(_{2}\) composite material was evidenced, via a covalent interaction, with contributions of the van der Waals type.


\({\hbox {TiO}}_2\) nanoparticles PbS quantum dot Energy storage Renewable energy Molecular Dynamics 



T.G.D.R. wants to acknowledge the Ph.D. Scholarship provided by CONACYT with No.287914. J.M. wants to acknowledge the computational infrastructure provided by Laboratorio Nacional de Conversión y Almacenamiento de Energía (CONACYT) under Project No. 270810 and the Supercomputing Department of Universidad Nacional Autónoma de México for the computing resources under Projects Nos. LANCAD-UNAM-DGTIC-370 and LANCAD-UNAM-DGTIC-310 and Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) under Project No. PAPIIT-IN109319. The authors recognize the computer resources, technical expertise and support provided by LNS (Laboratorio Nacional de Supercmputo del Sureste de México) of Benemérita Universidad Autónoma de Puebla (BUAP) for the computing resources provided under Project No. . We also acknowledge the technical support provided by Patricia Altuzar.

Supplementary material

214_2019_2480_MOESM_ESM.pdf (1 mb)
Supplementary material 1 (pdf 1043 KB)


  1. 1.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal \(\text{ TiO }_{2}\) films. Nature 353:737. EPCrossRefGoogle Scholar
  2. 2.
    Gupta S, Mital Tripathi M (2011) A review of \(\text{ TiO }_{2}\) nanoparticles. Chin Sci Bull 56:1639. CrossRefGoogle Scholar
  3. 3.
    Ivanova T, Harizanova A, Koutzarova T, Krins N, Vertruyen B (2009) Electrochromic \(\text{ TiO }_2\), \(\text{ ZrO }_2\) and \(\text{ TiO }_2-ZrO_2\) thin films by dip-coating method. Mater Sci Eng B 165:212. CrossRefGoogle Scholar
  4. 4.
    Akira F, Kenichi H (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37CrossRefGoogle Scholar
  5. 5.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503CrossRefGoogle Scholar
  6. 6.
    Muñiz J, Rincón ME, Acevedo-Peña P (2016) The role of the oxide shell on the stability and energy storage properties of \(\text{ MWCNT }@\text{ TiO }_2\). Theor Chem Acc 135:181CrossRefGoogle Scholar
  7. 7.
    Simons PY, Dachille F (1967) The structure of \(\text{ TiO }_{2}\text{ II }\), a high-pressure phase of \(\text{ TiO }_{2}\). Acta Cryst 23(2):334. CrossRefGoogle Scholar
  8. 8.
    Latroche M, Brohan L, Marchand R, Tournoux M (1989) New hollandite oxides: \(\text{ TiO }_2\)(H) and \(\text{ K }0.06\text{ TiO }_2\). J Solid State Chem 81(1):78. CrossRefGoogle Scholar
  9. 9.
    Qinghong Zhang JG, Lian G (2000) Effects of calcination on the photocatalytic properties of nanosized \(\text{ TiO }_2\) powders prepared by \(\text{ TiCl }_4\) hydrolysis. Appl Catal B 26(3):207. CrossRefGoogle Scholar
  10. 10.
    Madras G, McCoy BJ (2007) Kinetic model for transformation from nanosized amorphous \(\text{ TiO }_2\) to anatase. Cryst Growth Des 7(2):250. CrossRefGoogle Scholar
  11. 11.
    Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB (2012) Nonaqueous synthesis of \(\text{ TiO }_{2}\) nanocrystals using \(\text{ TiF }_{4}\) to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134:6751CrossRefGoogle Scholar
  12. 12.
    Pan J, Liu G, Lu GQM, Cheng HM (2011) On the true photoreactivity order of 001, 010, and 101 facets of anatase \(\text{ TiO }_{2}\) crystals. Angew Chem Int Ed 50:2133CrossRefGoogle Scholar
  13. 13.
    Liu J, Olds D, Peng R, Yu L, Foo GS, Qian S, Keum J, Guiton BS, Wu Z, Page K (2017) Quantitative analysis of the morphology of 101 and 001 faceted anatase \(\text{ TiO }_{2}\) nanocrystals and its implication on photocatalytic activity. Chem Mater 29(13):5591. CrossRefGoogle Scholar
  14. 14.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503. CrossRefPubMedGoogle Scholar
  15. 15.
    Kapilashrami M, Zhang Y, Liu YS, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of \(\text{ TiO }_{2}\) nanomaterials for renewable energy applications. Chem Rev 114(19):9662. CrossRefPubMedGoogle Scholar
  16. 16.
    Jiao J, Zhou ZJ, Zhou WH, Wu SX (2013) CdS and PbS quantum dots co-sensitized \(\text{ TiO }_{2}\) nanorod arrays with improved performance for solar cells application. Mater Sci Semicond Process 16(2):435. CrossRefGoogle Scholar
  17. 17.
    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of \(\text{ CdSe }/\text{ TiO }_{2}\) architecture. J Am Chem Soc 130(12):4007. CrossRefPubMedGoogle Scholar
  18. 18.
    Bessekhouad Y, Robert D, Weber J (2004) \(\text{ Bi }_{2}\text{ S }_{3}\text{ TiO }_{2}\) and \(\text{ CdSTiO }_{2}\) heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A 163(3):569. CrossRefGoogle Scholar
  19. 19.
    Trevisan R, Rodenas P, González-Pedro V, Sima C, Sánchez Rafael S, Barea Eva M, Mora-Sero Ivan, Fabregat-Santiago Francisco, Gimenez Sixto (2013) Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based a quasi-artificial leaf. J Phys Chem Lett 1:141CrossRefGoogle Scholar
  20. 20.
    Acharya KP, Hewa-Kasakarage NN, Alabi TR, Nemitz I, Khon E, Ullrich B, Anzenbacher P, Zamkov M (2010) Synthesis of \(\text{ PbS }/\text{ TiO }_{2}\) colloidal heterostructures for photovoltaic applications. J Phys Chem C 114(29):12496CrossRefGoogle Scholar
  21. 21.
    Wang C, Thompson RL, Ohodnicki P, Baltrus J, Matranga C (2011) Size-dependent photocatalytic reduction of \(\text{ CO }_{2}\) with PbS quantum dot sensitized \(\text{ TiO }_{2}\) heterostructured photocatalysts. J Mater Chem 21:13452. CrossRefGoogle Scholar
  22. 22.
    Lee YL, Chi CF, Liau SY (2010) CdS/CdSe co-sensitized \(\text{ TiO }_{2}\) photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem Mater 22:922CrossRefGoogle Scholar
  23. 23.
    Barkhouse DAR, Debnath R, Kramer IJ, Zhitomirsky D, Pattantyus-Abraham AG, Levina L, Etgar L, Gratzel M, Sargent EH (2011) Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv Mater 23(28):3134. CrossRefPubMedGoogle Scholar
  24. 24.
    Etgar L, Zhang W, Gabriel S, Hickey SG, Nazeeruddin MK, Eychmüller A, Liu B, Gratzel M (2012) High efficiency quantum dot heterojunction solar cell using anatase (001) \(\text{ TiO }_{2}\) nanosheets. Adv Mater 24:2202. CrossRefPubMedGoogle Scholar
  25. 25.
    Barea EM, Shalom M, Giménez S, Hod I, Mora-Seró I, Zaban A, Bisquert J (2010) Design of injection and recombination in quantum dot sensitized solar cells. J Am Chem Soc 132(19):6834. CrossRefPubMedGoogle Scholar
  26. 26.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53. CrossRefGoogle Scholar
  27. 27.
    Etgar L, Moehl T, Gabriel S, Hickey SG, Eychmüller A, Gratzel M (2012) Light energy conversion by mesoscopic PbS quantum dots \(\text{ TiO }_{2}\) heterojunction solar cells. ACS Nano 6(4):3092. CrossRefPubMedGoogle Scholar
  28. 28.
    Auvinen S, Alatalo M, Haario H, Jalava JP, Lamminmaki RJ (2011) Size and shape dependence of the electronic and spectral properties in \(\text{ TiO }_2\) nanoparticles. J Phys Chem C 115:8484CrossRefGoogle Scholar
  29. 29.
    Lundqvist MJ, Nilsing M, Persson P, Lunell S (2006) DFT study of bare and dye-sensitized \( {T}\text{ i } {O}_2\) clusters and nanocrystals. Int J Quantum Chem 106:3214CrossRefGoogle Scholar
  30. 30.
    Kim D, Kim DH, Lee JH, Grossman JC (2013) Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys Rev Lett 110:196802. CrossRefPubMedGoogle Scholar
  31. 31.
    Azpiroz JM, Ugalde JM, Etgar L, Infante I, De Angelis F (2015) The effect of \(\text{ TiO }_{2}\) surface on the electron injection efficiency in PbS quantum dot solar cells: a first-principles study. Phys Chem Chem Phys 17:6076CrossRefGoogle Scholar
  32. 32.
    Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180(11):2175. CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:3865CrossRefGoogle Scholar
  34. 34.
    Duin ACV, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) \(\text{ ReaxFF }_{SiO}\) reactive force field for silicon and silicon oxide systems. Phys Chem A 107:3803CrossRefGoogle Scholar
  35. 35.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1. Accessed 12 June 2019CrossRefGoogle Scholar
  36. 36.
    Chenoweth K, van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040. PMID: 18197648CrossRefPubMedGoogle Scholar
  37. 37.
    Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34:57. CrossRefGoogle Scholar
  38. 38.
    van Rossum G, Team PD (2015) Python 2.7.10 language reference. Samurai Media Limited, SurreyGoogle Scholar
  39. 39.
    Masakazu Anpo TS (1987) Photocatalytic hydrogenation of CH, CCH with \(\text{ H }_20\) on small-particle \(\text{ TiO }_{2}\): size quantization effects and reaction intermediates. J Phys Chem 91:4305. CrossRefGoogle Scholar
  40. 40.
    Egami T, Billinge S (2003) Underneath the Bragg peaks structural analysis of complex materials, 1st edn. Pergamon, OxfordGoogle Scholar
  41. 41.
    Billinge SJL, Kanatzidis MG (2004) Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem Commun 7:749. CrossRefGoogle Scholar
  42. 42.
    Rhonda P, Breshears Jean D, Paul B, Kannewurf Carl R, Billinge Simon JL, Kanatzidis Mercouri G (2001) \(\text{ CuxUTe }_3\): stabilization of \(\text{ UTe }_3\) in the \(\text{ ZrSe }_3\) structure type via copper insertion. The artifact of te-te chains and evidence for distortions due to long range modulations. J Am Chem Soc 20:4755. CrossRefGoogle Scholar
  43. 43.
    Masadeh AS, Bozin ES, Farrow CL, Paglia G, Juhas P, Billinge SJL (2007) Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys Rev B 11:115413. CrossRefGoogle Scholar
  44. 44.
    Qiu X, Thompson JW, Billinge SJL (2004) PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J Appl Crystallogr 37(4):678. CrossRefGoogle Scholar
  45. 45.
    Zhang H, Chen B, Banfield JF, Waychunas GA (2008) Atomic structure of nanometer-sized amorphous \(\text{ TiO }_2\). Phys Rev B 78:214Google Scholar
  46. 46.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65. CrossRefGoogle Scholar
  47. 47.
    Proffen Th, Billinge SJL (1999) PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Crystallogr 32(3):572. CrossRefGoogle Scholar
  48. 48.
    Masadeh AS, Božin ES, Farrow CL, Paglia G, Juhas P, Billinge SJL, Karkamkar A, Kanatzidis MG (2007) Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys Rev B 76:115413. CrossRefGoogle Scholar
  49. 49.
    Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación en Dispositivos SemiconductoresBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Facultad de Ciencias Físico MatemáticasBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations