Advertisement

The mechanism of electrophilic addition of singlet oxygen to pyrrolic ring

  • Nassim Zeinali
  • Ibukun Oluwoye
  • Mohammednoor AltarawnehEmail author
  • Bogdan Z. Dlugogorski
Regular Article
  • 19 Downloads

Abstract

Pyrrolic compounds assume an important role in the chemistry of living organisms, coal surrogates and novel drugs. However, literature reports a few studies on their reactivity towards prominent oxidising agents. This contribution presents a comprehensive mechanistic study of the oxidation of unsubstituted pyrrole with singlet oxygen (O2 1g) by deploying a quantum chemical framework leading to the production of succinimide, as the major products, through a Diels–Alder addition of O2 1g to the aromatic ring. Other products such as maleimide, hydroperoxide, formamide and epoxide adducts appear to form via insignificant channels. The primary Diels–Alder channel encompasses a barrier of 41 kJ/mol with a fitted rate constant of k(T) = 1.87 × 10−13 exp(− 48,000/RT) cm3 mol−1 s−1. Furthermore, a kinetic study has been undertaken to investigate the influence of substituents on reaction rate of the Diels–Alder addition of singlet oxygen to a pyrrolic ring. The results clarify that electropositive substituents such as BeH and BH2 operate as π-acceptors and thus deactivate the ring towards electrophilic attack of singlet oxygen. However, substituents comprising of strong π-donors, e.g., NH2 and OH, destabilise the ring structure, increasing its oxidation reactivity.

Keywords

Pyrrole Singlet oxygen Reaction mechanism DFT 

Notes

Acknowledgements

This study has been supported by grants of computing time from the National Computational Infrastructure (NCI) and from the Pawsey Supercomputing Centre, Australia, as well as funds from the Australian Research Council (ARC). N.Z. thanks Murdoch University for the award of postgraduate scholarships. Authors thank Dr Mansour Almatarneh (The University of Jordan) for fruitful discussion during the revision of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Wang K, Xu M, Gu Z, Ahrenkiel P, Lee J, Gibbons W, Croat J, Fan Q (2016) Pyrrole modified biomass derived hierarchical porous carbon as high performance symmetrical supercapacitor electrodes. Int J Hydrogen Energy 41(30):13109–13115CrossRefGoogle Scholar
  2. 2.
    Reindel J, Roth R (1991) The effects of monocrotaline pyrrole on cultured bovine pulmonary artery endothelial and smooth muscle cells. Am J Pathol 138(3):707PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kirtley SM, Mullins OC, van Elp J, Cramer SP (1993) Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy. Fuel 72(1):133–135CrossRefGoogle Scholar
  4. 4.
    Speight JG (2012) The chemistry and technology of coal. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Jones RA, Bean GP (2013) The chemistry of pyrroles: organic chemistry: a series of monographs, vol 34. Academic Press, CambridgeGoogle Scholar
  6. 6.
    Clennan EL, Pace A (2005) Advances in singlet oxygen chemistry. Tetrahedron 61(28):6665–6691CrossRefGoogle Scholar
  7. 7.
    Wasserman HH, Miller AH (1969) Photosensitized oxygenation of N-substituted pyrroles. J Chem Soc D Chem Commun 5:199–200CrossRefGoogle Scholar
  8. 8.
    Wasserman HH, DeSimone RW, Boger DL, Baldino CM (1993) Singlet oxygen oxidation of bipyrroles: total synthesis of d, l-and meso-isochrysohermidin. J Am Chem Soc 115(18):8457–8458CrossRefGoogle Scholar
  9. 9.
    Boger DL, Baldino CM (1991) Singlet oxygen mediated oxidative decarboxylation of pyrrole-2-carboxylic acids. J Org Chem 56(24):6942–6944CrossRefGoogle Scholar
  10. 10.
    Quistad GB, Lightner DA (1971) Pyrrole photo-oxidation. The direct formation of maleimides. J Chem Soc D Chem Commun 18:1099–1100CrossRefGoogle Scholar
  11. 11.
    Ber GC (1962) Photo-radicals in liquid solutions. Acta Chem Scand 16(2):449Google Scholar
  12. 12.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision a. 02, gaussian. Inc, Wallingford, CT 200Google Scholar
  13. 13.
    Montgomery J Jr, Ochterski J, Petersson G (1994) A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J Chem Phys 101(7):5900–5909CrossRefGoogle Scholar
  14. 14.
    Fukui K (1982) Role of frontier orbitals in chemical reactions. Science (New York, NY) 218(4574):747–754CrossRefGoogle Scholar
  15. 15.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764CrossRefGoogle Scholar
  16. 16.
    Mokrushin V, Bedanov V, Tsang W, Zachariah M, Knyazev V (2002) ChemRate, version 1.19. NIST, GaithersburgGoogle Scholar
  17. 17.
    Glowacki DR, Liang C-H, Morley C, Pilling MJ, Robertson SH (2012) MESMER: an open-source master equation solver for multi-energy well reactions. J Phys Chem A 116(38):9545–9560CrossRefGoogle Scholar
  18. 18.
    Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107(8):3210–3221CrossRefGoogle Scholar
  19. 19.
    Richmond TJ (1984) Solvent accessible surface area and excluded volume in proteins: analytical equations for overlapping spheres and implications for the hydrophobic effect. J Mol Biol 178(1):63–89CrossRefGoogle Scholar
  20. 20.
    Zeinali N, Altarawneh M, Li D, Al-Nu’airat J, Dlugogorski BZ (2016) New mechanistic insights: why do plants produce isoprene? ACS Omega 1(2):220–225CrossRefGoogle Scholar
  21. 21.
    Al-Nu’airat J, Dlugogorski BZ, Gao X, Zeinali N, Skut J, Westmoreland PR, Oluwoye I, Altarawneh M (2019) Reaction of phenol with singlet oxygen. Phys Chem Chem Phys 21(1):171–183CrossRefGoogle Scholar
  22. 22.
    Al-Nu’airat J, Altarawneh M, Gao X, Westmoreland PR, Dlugogorski BZ (2017) Reaction of aniline with singlet oxygen (O2 1Δg). J Phys Chem A 121(17):3199–3206CrossRefGoogle Scholar
  23. 23.
    Nygaard U, Nielsen JT, Kirchheiner J, Maltesen G, Rastrup-Andersen J, Sørensen GO (1969) Microwave spectra of isotopic pyrroles. Molecular structure, dipole moment, and 14 N quadrupole coupling constants of pyrrole. J Mol Struct 3(6):491–506CrossRefGoogle Scholar
  24. 24.
    Br Bak, Christensen D, Hansen L, Rastrup-Andersen J (1956) Microwave determination of the structure of pyrrole. J Chem Phys 24(4):720–725CrossRefGoogle Scholar
  25. 25.
    Leach AG, Houk K (2002) Diels-Alder and ene reactions of singlet oxygen, nitroso compounds and triazolinediones: transition states and mechanisms from contemporary theory. Chem Commun 12:1243–1255CrossRefGoogle Scholar
  26. 26.
    Lightner DA, Pak C-S (1975) Dye-sensitized photooxygenation of tert-butylpyrroles. J Org Chem 40(19):2724–2728CrossRefGoogle Scholar
  27. 27.
    Ciamician G, Silber P (1912) Chemische lichtwirkungen. XXIV. Autooxydationen. II. Eur J Inorg Chem 45(2):1842–1845Google Scholar
  28. 28.
    Howard JK, Rihak KJ, Bissember AC, Smith JA (2016) The oxidation of pyrrole. Chem Asian J 11(2):155–167CrossRefGoogle Scholar
  29. 29.
    Elsässer T, Van den Akker H (2013) Ultrafast hydrogen bonding dynamics and proton transfer processes in the condensed phase, vol 23. Springer, BerlinGoogle Scholar
  30. 30.
    Wasserman H, Floyd M (1966) The oxidation of heterocyclic systems by moleculr oxygen—IV: the photosensitized autoxidation of oxazoles. Tetrahedron 22:441–448CrossRefGoogle Scholar
  31. 31.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746CrossRefGoogle Scholar
  32. 32.
    Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, vol 18. Cornell University Press, IthacaGoogle Scholar
  33. 33.
    Ozimiński WP, Dobrowolski JC (2009) σ-and π-electron contributions to the substituent effect: natural population analysis. J Phys Org Chem 22(8):769–778CrossRefGoogle Scholar
  34. 34.
    Galván JE, Gil DM, Lanús HE, Altabef AB (2015) Theoretical study on the molecular structure and vibrational properties, NBO and HOMO–LUMO analysis of the POX3 (X = F, Cl, Br, I) series of molecules. J Mol Struct 1081:536–542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Chemistry and Physics, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochAustralia
  2. 2.Department of Chemical EngineeringAl-Hussein Bin Talal UniversityMa’anJordan

Personalised recommendations