Structures and relative stabilities of Na+Nen (n = 1–16) clusters via pairwise and DFT calculations

  • Mouna Ben Hadj Ayed
  • Tringa Osmani
  • Noureddine Issaoui
  • Avni Berisha
  • Brahim Oujia
  • Houcine GhallaEmail author
Regular Article


The structural properties and relative stabilities of the Na+Nen clusters, with n = 1–16, have been investigated by using pairwise and density functional theory (DFT) methods. The DFT calculations have been carried out using the M06-2X functional combined with the augmented aug-cc-pVTZ basis sets. For both methods, the high stability is obtained for Na+Ne12 cluster with an icosahedral structure, and the twelve Ne atoms complete the first solvation shell around the Na+ cation. Therefore, the icosahedral Na+Ne12 structure will be considered as the core for the larger sizes. The relative stabilities have been studied in terms of the binding energies, second-order difference of energies, fragmentation energies and HOMO–LUMO energy gaps. The Na–Ne interactions within the Na+Nen clusters in relation to the relative stabilities have been discussed through topological atom-in-molecules and reduced density gradient analyses. Finally, the relative stabilities of the Na+Nen clusters have been discussed topologically.


Na+Nen Relative stabilities Pairwise DFT calculations M06-2X Non-covalent interactions 



  1. 1.
    Prekas D, Luder C, Velegrakis M (1997) J Chem Phys 108:4450CrossRefGoogle Scholar
  2. 2.
    Froudakisa GE, Farantosa SC, Velegrakis M (2000) Chem Phys 258:13CrossRefGoogle Scholar
  3. 3.
    Ryan M, Collier M, de Pujo P, Crépin C, McCaffrey JG (2010) J Phys Chem A 114:3011CrossRefGoogle Scholar
  4. 4.
    Fanourgakis GS, Farantos SC, Lüder C, Velegrakis M, Xantheas SS (1998) J Chem Phys 109:108CrossRefGoogle Scholar
  5. 5.
    Velegrakis M, Luder C (1994) Chem Phys Lett 223:139CrossRefGoogle Scholar
  6. 6.
    Luder C, Prekasf D, Velegrakis M (1997) Laser Chem 17:109CrossRefGoogle Scholar
  7. 7.
    Wright TG, Breckenridge WH (2010) J Phys Chem A 114:3182CrossRefGoogle Scholar
  8. 8.
    Whetten RL, Schriver KE, Persson JL, Hahn MY (1990) J Chem Soc Faraday Trans 86:2375CrossRefGoogle Scholar
  9. 9.
    Farges J, De Feraudy MF, Raoult B, Torchet G (1983) J Chem Phys 78:5067CrossRefGoogle Scholar
  10. 10.
    Farges J, De Feraudy MF, Raoult B, Torchet G (1986) J Chem Phys 84:3491CrossRefGoogle Scholar
  11. 11.
    Gaied W, Ben El Hadj Rhouma M (2011) Int J Quantum Chem 111:652CrossRefGoogle Scholar
  12. 12.
    Issa K, Issaoui N, Ghalla H, Yaghmour SJ, Mahros AM, Oujia B (2016) J Mol Phys 114:118CrossRefGoogle Scholar
  13. 13.
    Bilalbegović G (2003) Phys Lett A 308:61CrossRefGoogle Scholar
  14. 14.
    Di Paola C, Sebastianelli F, Bodo E, Baccarelli I, Gianturco FA (2005) J Chem Theory Comput 1:1045CrossRefGoogle Scholar
  15. 15.
    Sebastianelli F, Bodo E, Baccarelli I, Di Paola C, Gianturco FA, Yurtsever M (2006) J Comput Mater 35:261CrossRefGoogle Scholar
  16. 16.
    Sapse AM, Dumitra A, Jain DCA (2003) J Clust Sci 14:21CrossRefGoogle Scholar
  17. 17.
    Gardner AM, Withers CD, Graneek JB, Wright TG (2010) J Phys Chem A 114:7631CrossRefGoogle Scholar
  18. 18.
    Bu X, Zhong C, Jalbout AF (2004) Chem Phys Lett 387:410CrossRefGoogle Scholar
  19. 19.
    Xinping B, Chongli Z (2004) Chem Phys Lett 392:181CrossRefGoogle Scholar
  20. 20.
    Abdessalem K, Habli H, Ghalla H, Yaghmour SJ, Calvo F, Oujia B (2014) J Chem Phys 141:154308CrossRefGoogle Scholar
  21. 21.
    Hernández-Rojas J, Wales DJ (2003) J Chem Phys 119:7800CrossRefGoogle Scholar
  22. 22.
    Fujisaki A (2002) J Chem Phys 117:5271CrossRefGoogle Scholar
  23. 23.
    Nagata T, Aoyagi M, Lwata S (2004) J Phys Chem A 108:683CrossRefGoogle Scholar
  24. 24.
    Giju KT, Roszack S, Gora RW, Leszczynski J (2004) Chem Phys 391:112Google Scholar
  25. 25.
    Fujisaki A (1995) J Chem Phys 102:8485CrossRefGoogle Scholar
  26. 26.
    Breckenridge WH, Ayles VL, Wright TG (2007) Chem Phys 333:77CrossRefGoogle Scholar
  27. 27.
    Lan YZ, Feng YL (2009) Phys Rev A 79:033201CrossRefGoogle Scholar
  28. 28.
    He J, Wu K, Sa R, Li Q, Wei Y (2010) Chem Phys Lett 490:132CrossRefGoogle Scholar
  29. 29.
    He J, Wu K, Liu C, Sa R (2009) Chem Phys Lett 483:30CrossRefGoogle Scholar
  30. 30.
    Issaoui N, Abdessalem K, Ghalla H, Yaghmour SJ, Calvo F, Oujia B (2014) J Chem Phys 141:174316CrossRefGoogle Scholar
  31. 31.
    Gueorguiev GK, Pacheco JM, Stafstrom S, Hultman L (2006) Thin Solid Films 515:1192CrossRefGoogle Scholar
  32. 32.
    Shi S, Liu Y, Zhang C, Denga B, Jiang GA (2015) Comput Theor Chem 1054:8CrossRefGoogle Scholar
  33. 33.
    Bhattacharjee D, Mishra BK, Chakrabartty AK, Deka RC (2014) Comput Theor Chem 1034:61CrossRefGoogle Scholar
  34. 34.
    Liu Y, Tiana Z, Cheng L (2016) RSC Adv 6:4705CrossRefGoogle Scholar
  35. 35.
    Chuang FC, Hsu CC, Hsieh YY, Albao MA (2010) Chin J Phys 48:82Google Scholar
  36. 36.
    Li Z, Zhao Z (2017) Mater Chem Phys 187:54CrossRefGoogle Scholar
  37. 37.
    Li GL, Ma WL, Gao AM, Chen HY, Finlow D, Li QS (2012) J Theor Comput Chem 11:185CrossRefGoogle Scholar
  38. 38.
    Maa QM, Xie Z, Wang BR, Liu Y, Li YC (2011) Solid State Commun 151:806–810CrossRefGoogle Scholar
  39. 39.
    Lin L, Yang J (2015) J Mol Model 21:155CrossRefGoogle Scholar
  40. 40.
    Wales DJ, Doye JKP (1997) J Phys Chem A 101:5111CrossRefGoogle Scholar
  41. 41.
    Naumkin FY, Wales DJ (1998) Chem Phys Lett 290:164CrossRefGoogle Scholar
  42. 42.
    Doye JPK, Wales DJ (1998) Phys Rev Lett 80:1357CrossRefGoogle Scholar
  43. 43.
    Leary RH, Doye JPK (1999) Phys Rev E 60:R6320CrossRefGoogle Scholar
  44. 44.
    Naumkin FY, Wales DJ (2000) Mol Phys 98:219CrossRefGoogle Scholar
  45. 45.
    Wolf MD, Landman U (1998) J Phys Chem A 102:6129CrossRefGoogle Scholar
  46. 46.
    Xiao Y, Williams DE (1993) Chem Phys Lett 215:17CrossRefGoogle Scholar
  47. 47.
    Zeiri Y (1995) Phys Rev E 51:R2769CrossRefGoogle Scholar
  48. 48.
    Deaven DM, Tit N, Morris JR, Ho KM (1996) Chem Phys Lett 256:195CrossRefGoogle Scholar
  49. 49.
    Ahlrichs R, Böhm HJ, Brode S, Tang KT, Toennies JP (1988) J Chem Phys 88:6290CrossRefGoogle Scholar
  50. 50.
    Tang KT, Toennies JP (1984) J Chem Phys 80:3726CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  52. 52.
    Zhang J, Dolg M (2015) ABCluster: the artificial bee colony algorithm for cluster global optimization Phys. Chem Chem Phys 17:24173–24181CrossRefGoogle Scholar
  53. 53.
    Zhang J, Dolg M (2016) Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys Chem Chem Phys 18:3003e10Google Scholar
  54. 54.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126CrossRefGoogle Scholar
  56. 56.
    Bililign S, Gutowski M, Simons J, Breckenridge WH (1994) J Chem Phys 100:8212CrossRefGoogle Scholar
  57. 57.
    Aziz RA, Slaman MJ (1989) Chem Phys 130:187CrossRefGoogle Scholar
  58. 58.
    Reis H, Papadopoulos MG, Boustani I (2000) Int J Quantum Chem 78:131CrossRefGoogle Scholar
  59. 59.
    Hickey AL, Rowley CN (2014) J Phys Chem A 118:3678CrossRefGoogle Scholar
  60. 60.
    Dutta A, Mondal P (2017) Comput Theor Chem 1115:284CrossRefGoogle Scholar
  61. 61.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Pakiari AH, Eskandari KJ (2006) J Mol Struct THEOCHEM 759:51CrossRefGoogle Scholar
  63. 63.
    Johnson ER, Keinan S, Paula MS, Julia CG, Cohen AJ, Yang WT (2010) J Am Chem Soc 132:6498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Quantum and Statistical Physics Laboratory, Faculty of SciencesUniversity of MonastirMonastirTunisia
  2. 2.Chemistry Department of Natural Sciences FacultyUniversity of PrishtinaPrishtinaKosovo
  3. 3.Physics Department, Faculty of ScienceUniversity of JeddahJeddahKingdom of Saudi Arabia

Personalised recommendations