Advertisement

Performance of the NOF-MP2 method in hydrogen abstraction reactions

  • Xabier Lopez
  • Mario PirisEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

The recently proposed natural orbital functional second-order Møller–Plesset (NOF-MP2) method is capable of achieving both dynamic and static correlations even for those systems with a significant multiconfigurational character. We test its reliability to describe the electron correlation in radical formation reactions, namely in the homolytic X–H bond cleavage of LiH, BH, \({\hbox {CH}}_{4}, {\hbox {NH}}_{3}, {\hbox {H}}_{2}{\hbox {O}}\) and HF molecules. Our results are compared with CASSCF and CASPT2 wavefunction calculations and the experimental data. For a dataset of 20 organic molecules, the thermodynamics of C–H homolytic bond cleavage, in which the C–H bond is broken in the presence of different chemical environments, is presented. The radical stabilization energies obtained for such general dataset are compared with the experimental data. It is observed that NOF-MP2 is able to give a quantitative agreement for dissociation energies, with a performance comparable to that of the accurate CASPT2 method.

Keywords

Natural orbital functional second-order Møller–Plesset (NOF-MP2) method Electron correlation Radical formation reactions Homolytic X–H bond cleavage Homolytic C–H bond cleavage Dissociation energies Radical stabilization energies 

Notes

Acknowledgements

Financial support comes from Ministerio de Economía y Competitividad (Ref. CTQ2015-67608-P). The authors thank for technical and human support provided by IZO-SGI SGIker of UPV/EHU and European funding (ERDF and ESF).

References

  1. 1.
    Piris M (2007) In: Mazziotti DA (ed) Reduced-Density-Matrix Mechanics: with applications to many-electron atoms and molecules, chap 14. Wiley, Hoboken, pp 387–427Google Scholar
  2. 2.
    Piris M, Ugalde JM (2014) Int J Quantum Chem 114:1169CrossRefGoogle Scholar
  3. 3.
    Pernal K, Giesbertz KJH (2016) Top Curr Chem 368:125CrossRefGoogle Scholar
  4. 4.
    Piris M (2017) Phys Rev Lett 119:063002CrossRefGoogle Scholar
  5. 5.
    Gilbert TL (1975) Phys Rev B 12:2111CrossRefGoogle Scholar
  6. 6.
    Levy M (1979) Proc Natl Acad Sci USA 76:6062CrossRefGoogle Scholar
  7. 7.
    Valone SM (1980) J Chem Phys 73:1344CrossRefGoogle Scholar
  8. 8.
    Coleman AJ (1963) Rev Mod Phys 35:668CrossRefGoogle Scholar
  9. 9.
    Piris M (2018a) In: Angilella GGN, Amovilli C (eds) Many-body approaches at different scales: a tribute to N. H. March on the occasion of his 90th birthday, chap 22. Springer, New York, pp 283–300Google Scholar
  10. 10.
    Piris M (2013) Int J Quantum Chem 113:620CrossRefGoogle Scholar
  11. 11.
    Piris M (2018) Phys Rev A 98:022504CrossRefGoogle Scholar
  12. 12.
    Saebo S (2002) Comput Chem Rev Curr Trends 7:63–87CrossRefGoogle Scholar
  13. 13.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Int 160:1CrossRefGoogle Scholar
  14. 14.
    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44CrossRefGoogle Scholar
  15. 15.
    Breher F (2007) Coord Chem Rev 251:1007CrossRefGoogle Scholar
  16. 16.
    Lopez X, Piris M, Ruipérez F, Ugalde JM (2015) J Phys Chem A 119:6981CrossRefGoogle Scholar
  17. 17.
    Basch H, Hoz S (1997) J Phys Chem A 101:4416CrossRefGoogle Scholar
  18. 18.
    Coote M (2004) J Phys Chem A 108:3865CrossRefGoogle Scholar
  19. 19.
    Temelso B, Sherrill CD, Merkle RC, Freitas RA (2006) J Phys Chem A 110:11160CrossRefGoogle Scholar
  20. 20.
    Vandeputte AG, Sabbe MK, Reyniers M-F, Van Speybroeck V, Waroquier M, Marin GB (2007) J Phys Chem A 111:11771CrossRefGoogle Scholar
  21. 21.
    Shao Y, Head-Gordon M, Krylov AI (2003) J Chem Phys 118:4807CrossRefGoogle Scholar
  22. 22.
    Krylov AI (2006) Acc Chem Res 39:83CrossRefGoogle Scholar
  23. 23.
    Ess D, Cook T (2001) J Phys Chem A 116:4922CrossRefGoogle Scholar
  24. 24.
    Menon AS, Wood GPF, Moran D, Radom L (2007) J Phys Chem A 111:13638CrossRefGoogle Scholar
  25. 25.
    Menon AS, Radom L (2008) J Phys Chem A 112:13225CrossRefGoogle Scholar
  26. 26.
    Lai W, Li C, Chen H, Shaik S (2012) Angewandte Chemie (International ed. in English) 51:5556Google Scholar
  27. 27.
    Carstensen H-H, Dean AM, Deutschmann O (2007) Proc Combust Inst 31:149CrossRefGoogle Scholar
  28. 28.
    Huynh LK, Barriger K, Violi A (2008) J Phys Chem A 112:1436CrossRefGoogle Scholar
  29. 29.
    Huynh LK, Carstensen H-H, Dean AM (2010) J Phys Chem A 114:6594CrossRefGoogle Scholar
  30. 30.
    Stadtman ER, Levine RL (2003) Amino Acids 25:207CrossRefGoogle Scholar
  31. 31.
    Prousek J (2007) Pure Appl Chem 79:2325CrossRefGoogle Scholar
  32. 32.
    Balasubramanian B, Pogozelski WK, Tullius TD (1998) Proc Natl Acad Sci USA 95:9738CrossRefGoogle Scholar
  33. 33.
    Vereecken L, Peeters J (2001) Chem Phys Lett 333:162CrossRefGoogle Scholar
  34. 34.
    Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255CrossRefGoogle Scholar
  35. 35.
    Piris M (2018b) In: Chakraborty T, Carbó-Dorca R (eds) Theoretical and quantum chemistry at the dawn of the 21st century, chap 22. Apple Academic Press, New Jersey, pp 593–620Google Scholar
  36. 36.
    Piris M, Ugalde JM (2009) J Comput Chem 30:2078CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  38. 38.
    Dunning TH, Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  39. 39.
    Johnson III, RD (ed) NIST CCCBDB, NIST Standard Reference Database Number 101, Release 19 (2018)Google Scholar
  40. 40.
    Piris M (2014) J Chem Phys 141:044107CrossRefGoogle Scholar
  41. 41.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157CrossRefGoogle Scholar
  42. 42.
    Siegbahn P, Heiberg A, Roos BO, Levy B (1980) Phys Scr 21:323CrossRefGoogle Scholar
  43. 43.
    Andersson K, Malmqvist P, Roos BO (1992) J Chem Phys 96:1218CrossRefGoogle Scholar
  44. 44.
    Aquilante F, Vico LDE, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Pedersen TB, Nák MP, Reiher M, Roos BO et al (2009) J Comput Chem 31:224CrossRefGoogle Scholar
  45. 45.
    Ervin K, DeTuri V (2002) J Phys Chem A 106:9947.  https://doi.org/10.1021/jp020594n CrossRefGoogle Scholar
  46. 46.
    Henry DJ, Parkinson CJ, Mayer PM, Radom L (2001) J Phys Chem A 105:6750CrossRefGoogle Scholar
  47. 47.
    Korchowiec J (2002) J Phys Organ Chem 15:524CrossRefGoogle Scholar
  48. 48.
    Wood GPF, Moran D, Jacob R, Radom L (2005) J Phys Chem A 109:6318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kimika FakultateaEuskal Herriko Unibertsitatea (UPV/EHU)DonostiaSpain
  2. 2.Donostia International Physics Center (DIPC)DonostiaSpain
  3. 3.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations