Advertisement

Theoretical investigation on the structures, electronic and magnetic properties of new 2D/1D composite nanosystems by adsorbing superhalogen MnCl3 on the BN monolayer/nanoribbons

  • Xiaopeng Shen
  • Guangtao YuEmail author
  • Xuri Huang
  • Wei ChenEmail author
Regular Article
  • 25 Downloads

Abstract

Hexagonal boron nitride (h-BN), an inorganic analogue of graphene, possesses the remarkable physical and chemical properties and can be viewed as the powerful building block to construct novel composite nanomaterials. In this study, based on the first-principles calculations, we design a new class of hybrid nanosystems by depositing superhalogen MnCl3 on the surface of low-dimensional BN monolayer or nanoribbons (BNML/BNNRs). The large adsorption energies indicate that the MnCl3 can be stably adsorbed on the surface of the BN materials. Regardless of dimension, chirality, ribbon width as well as the adsorption site and coverage of MnCl3, adsorbing MnCl3 can endow these hybrid BN nanomaterials with a large magnetic moment and significantly reduce the robust wide band gap of BN materials to the range of 0.098–0.948 eV. Overall, these new MnCl3–BN composite nanostructures can display the large magnetism and an appropriate band gap, which is very promising to make them an application in the field of multifunctional nanodevices and magnetic materials in the near future.

Keywords

Superhalogen MnCl3 Low-dimensional BN nanosystems Electronic and magnetic properties Band gap First-principles calculations 

Notes

Acknowledgements

This work was supported in China by NSFC (21673093, 21673094 and 21573090), Science and Technology Research Program of Education Department of Jilin Province (JJKH20190121KJ and JJKH20170780KJ), and Jilin Province Science and Technology Development Plan (20170101175JC). We acknowledge the Computing Center of Jilin Province and the High Performance Computing Center (HPCC) of Jilin University for supercomputer time.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

214_2019_2473_MOESM1_ESM.docx (25.4 mb)
Supplementary material 1 (DOCX 26049 kb)

References

  1. 1.
    Katsnelson MI, Novoselov KS, Geim AK (2006) Nat Phys 2:620CrossRefGoogle Scholar
  2. 2.
    Katsnelson MI, Novoselov KS (2007) Solid State Commun 143:3CrossRefGoogle Scholar
  3. 3.
    Zhang YB, Tan Y-W, Stormer HL, Kim P (2005) Nature 438:201CrossRefGoogle Scholar
  4. 4.
    Lee CG, Wei XD, Kysar JW, Hone J (2008) Science 321:385CrossRefGoogle Scholar
  5. 5.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WAD (2006) Science 312:1191CrossRefGoogle Scholar
  6. 6.
    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Science 315:1379CrossRefGoogle Scholar
  7. 7.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  8. 8.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498CrossRefGoogle Scholar
  9. 9.
    Sordan R, Traversi F, Russo V (2009) Appl Phys Lett 94:073305CrossRefGoogle Scholar
  10. 10.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  11. 11.
    Li YF, Zhou Z, Shen PW, Chen ZF (2009) ACS Nano 3:1952CrossRefGoogle Scholar
  12. 12.
    Yang J, Han X, Bian B (2018) Theor Chem Acc 137:178CrossRefGoogle Scholar
  13. 13.
    Wu M, Wu X, Zeng XC (2010) J Phys Chem C 114:3937CrossRefGoogle Scholar
  14. 14.
    Németh K (2018) Theor Chem Acc 137:157CrossRefGoogle Scholar
  15. 15.
    Majidi R (2017) Theor Chem Acc 136:109CrossRefGoogle Scholar
  16. 16.
    Zhang HM, Lin HP, Sun KW, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong DY, Li YY, Müllen K, Fuchs H, Chi LF (2015) J Am Chem Soc 137:4022CrossRefGoogle Scholar
  17. 17.
    Krasheninnikov AV, Nieminen RM (2011) Theor Chem Acc 129:625CrossRefGoogle Scholar
  18. 18.
    Guan J, Chen W, Li YF, Yu GT, Shi ZM, Huang XR, Sun CC, Chen ZF (2013) Adv Funct Mater 23:1507CrossRefGoogle Scholar
  19. 19.
    Otero N, Karamanis P, Pouchan C (2018) Theor Chem Acc 137:16CrossRefGoogle Scholar
  20. 20.
    Nemnes GA, Visan C, Manolescu A (2017) J Mater Chem C 5:4435CrossRefGoogle Scholar
  21. 21.
    Chen W, Li YF, Yu GT, Zhou Z, Chen ZF (2009) J Chem Theory Comput 5:3088CrossRefGoogle Scholar
  22. 22.
    Lou P (2011) Phys Chem Chem Phys 13:17194CrossRefGoogle Scholar
  23. 23.
    Guan J, Chen W, Zhao XJ, Yu GT, Huang XR, Sun CC (2012) J Mater Chem 22:24166CrossRefGoogle Scholar
  24. 24.
    Tang Q, Zhou Z, Shen PW, Chen ZF (2013) Chem Phys Chem 14:1787CrossRefGoogle Scholar
  25. 25.
    Guan J, Yu GT, Ding XL, Chen W, Shi ZM, Huang XR, Sun CC (2013) Chem Phys Chem 14:2841CrossRefGoogle Scholar
  26. 26.
    Chen W, Zhang H, Ding XL, Yu GT, Liu D, Huang XR (2014) J Mater Chem C 2:7836CrossRefGoogle Scholar
  27. 27.
    Li H, Chen W, Sun YH, Huang XR, Yu GT (2015) Phys Chem Chem Phys 17:24038CrossRefGoogle Scholar
  28. 28.
    Sun YH, Yu GT, Liu JW, Shen XP, Huang XR, Chen W (2016) Phys Chem Chem Phys 18:1326CrossRefGoogle Scholar
  29. 29.
    Li H, Chen W, Shen XP, Liu JW, Huang XR, Yu GT (2017) Phys Chem Chem Phys 19:3694CrossRefGoogle Scholar
  30. 30.
    Ding XL, Yu GT, Huang XR, Chen W (2013) Phys Chem Chem Phys 15:18039CrossRefGoogle Scholar
  31. 31.
    Shen XP, Yu GT, Zhang ZS, Liu JW, Li H, Huang XR, Chen W (2017) J Mater Chem C 5:2022CrossRefGoogle Scholar
  32. 32.
    Zhi CY, Bando Y, Tang CC, Kuwahara H, Golberg D (2009) Adv Mater 21:2889CrossRefGoogle Scholar
  33. 33.
    Zeng HB, Zhi CY, Zhang ZH, Wei XL, Wang XB, Guo WL, Bando Y, Golberg D (2010) Nano Lett 10:5049CrossRefGoogle Scholar
  34. 34.
    Li C, Bando Y, Zhi C, Huang Y, Golberg D (2009) Nanotechnology 20:385707CrossRefGoogle Scholar
  35. 35.
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang CC, Zhi CY (2010) ACS Nano 4:2979CrossRefGoogle Scholar
  36. 36.
    Pakdel A, Zhi CY, Bando Y, Nakayama T, Golberg D (2011) ACS Nano 5:6507CrossRefGoogle Scholar
  37. 37.
    Li LH, Cevenka J, Watanabe K, Taniguchi T, Chen Y (2014) ACS Nano 8:1457CrossRefGoogle Scholar
  38. 38.
    Li LH, Xing T, Chen Y, Jones R (2014) Adv Mater Interfaces 1:1300132CrossRefGoogle Scholar
  39. 39.
    Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, Hone J (2010) Science 328:76CrossRefGoogle Scholar
  40. 40.
    Husain E, Narayanan TN, Taha-Tijerina JJ, Vinod S, Vajtai R, Ajayan PM (2013) ACS Appl Mater Interfaces 5:4129CrossRefGoogle Scholar
  41. 41.
    Zhou Z, Zhao JJ, Chen ZF, Gao XP, Lu JP, Schleyer PV, Yang CK (2006) J Phys Chem B 110:2529CrossRefGoogle Scholar
  42. 42.
    Zhong RL, Xu HL, Muhammad S, Zhang J, Su ZM (2012) J Mater Chem 22:2196CrossRefGoogle Scholar
  43. 43.
    Park CH, Louie SG (2008) Nano Lett 8:2200CrossRefGoogle Scholar
  44. 44.
    Chen W, Li YF, Yu GT, Li CZ, Zhang SB, Zhou Z, Chen ZF (2010) J Am Chem Soc 132:1699CrossRefGoogle Scholar
  45. 45.
    Wang Y, Li YF, Chen ZF (2014) J Phys Chem C 118:25051CrossRefGoogle Scholar
  46. 46.
    Tang Q, Zhou Z, Chen ZF (2011) J Phys Chem C 115:18531CrossRefGoogle Scholar
  47. 47.
    Shibuta M, Ohta T, Nakaya M, Tsunoyama H, Eguchi T, Nakajima A (2015) J Am Chem Soc 137:14015CrossRefGoogle Scholar
  48. 48.
    Reveles JU, Clayborne PA, Reber AC, Khanna SN, Pradhan K, Sen P, Pederson MR (2009) Nat Chem 1:310CrossRefGoogle Scholar
  49. 49.
    Tu CY, Yu GT, Yang GH, Zhao XG, Chen W, Li SC, Huang XR (2014) Phys Chem Chem Phys 16:1597CrossRefGoogle Scholar
  50. 50.
    Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) Nat Chem 2:678CrossRefGoogle Scholar
  51. 51.
    Reber AC, Khanna SN, Castleman AW (2007) J Am Chem Soc 129:10189CrossRefGoogle Scholar
  52. 52.
    Wang SJ, Li Y, Wang YF, Wu D, Li ZR (2013) Phys Chem Chem Phys 15:12903CrossRefGoogle Scholar
  53. 53.
    Jena P (2015) J Phys Chem Lett 6:1119CrossRefGoogle Scholar
  54. 54.
    Wu MM, Wang H, Ko YJ, Wang Q, Sun Q, Kiran B, Kandalam AK, Bowen KH, Jena P (2011) Angew Chem Int Ed 50:2568CrossRefGoogle Scholar
  55. 55.
    Li YW, Zhang SH, Wang Q, Jena P (2013) J Chem Phys 138:054309CrossRefGoogle Scholar
  56. 56.
    Zhao HM, Zhou J, Fang H, Jena P (2016) ChemPhys Chem 17:184CrossRefGoogle Scholar
  57. 57.
    Li H, Yu GT, Zhang ZS, Ma YF, Huang XR, Chen W (2018) RSC Adv 8:13167CrossRefGoogle Scholar
  58. 58.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  59. 59.
    Kresse G, Hafner J (1993) Phys Rev B Condens Matter Mater Phys 47:558CrossRefGoogle Scholar
  60. 60.
    Kresse G, Hafner J (1994) Phys Rev B Condens Matter Mater Phys 49:14251CrossRefGoogle Scholar
  61. 61.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  62. 62.
    Kresse G, Furthmüller J (1996) Phys Rev B Condens Matter Mater Phys 54:11169CrossRefGoogle Scholar
  63. 63.
    Zhang ZH, Guo WL, Yakobson BI (2013) Nanoscale 5:6381CrossRefGoogle Scholar
  64. 64.
    Yin LC, Cheng HM, Saito R (2010) Phys Rev B 81:153407CrossRefGoogle Scholar
  65. 65.
    Chen J, Zhang LW, Zhang L, Zheng XH, Xiao LT, Jia ST, Wang J (2018) Phys Chem Chem Phys 20:26744CrossRefGoogle Scholar
  66. 66.
    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R (2016) J Phys Chem C 120:25256CrossRefGoogle Scholar
  67. 67.
    Liu G, Luo WW, Wang X, Lei XL, Xu B, Ouyang CY, Liu SB (2018) J Mater Chem C 6:5937CrossRefGoogle Scholar
  68. 68.
    Hu AM, Wang LL, Xiao WZ, Xiao G, Rong QY (2015) Comput Mater Sci 107:72CrossRefGoogle Scholar
  69. 69.
    Jing Y, Tan X, Zhou Z, Shen PW (2014) J Mater Chem A 2:16892CrossRefGoogle Scholar
  70. 70.
    Blöchl PE (1994) Phys Rev B Condens Matter Mater Phys 50:17953CrossRefGoogle Scholar
  71. 71.
    Kresse G, Joubert D (1999) Phys Rev B Condens Matter Mater Phys 59:1758CrossRefGoogle Scholar
  72. 72.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  73. 73.
    Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115:8748CrossRefGoogle Scholar
  74. 74.
    Topsakal M, Aktürk E, Ciraci S (2009) Phys Rev B 79:115442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations