Computational prediction of bioactivity scores and chemical reactivity properties of the Parasin I therapeutic peptide of marine origin through the calculation of global and local conceptual DFT descriptors

  • Norma Flores-Holguín
  • Juan Frau
  • Daniel Glossman-MitnikEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


Eight density functionals, CAM-B3LYP, \(\hbox {LC-}\omega \hbox {PBE}\), M11, MN12SX, N12SX, \(\omega \hbox {B97}\), \(\omega \hbox {B97X}\), and \(\omega \hbox {B97XD}\), related to the Def2TZVP basis sets, were assessed together with the SMD solvation model for the calculation of the molecular properties and structure of the therapeutic peptide of marine origin Parasin I. All the chemical reactivity descriptors for the system are calculated via conceptual density functional theory (CDFT). The active sites suitable for nucleophilic, electrophilic, and radical attacks are selected by linking them with the Fukui function indices, nucleophilic and electrophilic Parr functions, and condensed dual descriptor \(\Delta {f(r)}\), respectively. The study reveals that the MN12SX and N12SX density functionals are the most appropriate ones for predicting the chemical reactivity of the molecule under study. Additionally, the pKa value for the peptide is predicted with great accuracy based on our previously published methodology. Moreover, the ability of the studied molecule in acting as an efficient inhibitor of the formation of advanced glycation endproducts (AGEs), which constitutes a useful knowledge for the development of drugs for fighting diabetes, Alzheimer and Parkinson diseases is also presented. Finally, the bioactivity scores for Parasin I are predicted through different methodologies.


Parasin I Conceptual DFT pKa AGEs inhibition ability Bioactivity scores 



This work has been partially supported by CIMAV, SC, and Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) through Grant 219566-2014 for Basic Science Research. Daniel Glossman-Mitnik conducted this work, while a Visiting Lecturer at the University of the Balearic Islands from which support is gratefully acknowledged. Norma Flores-Holguín and Daniel Glossman-Mitnik are researchers of CIMAV and CONACYT. This work was cofunded by the Ministerio de Economía y Competitividad (MINECO) and the European Fund for Regional Development (FEDER) (CTQ2014-55835-R).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest regarding the publication of this paper.

Supplementary material

214_2019_2469_MOESM1_ESM.pdf (244 kb)
Supplementary material 1 (pdf 243 KB)


  1. 1.
    Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793PubMedCrossRefGoogle Scholar
  3. 3.
    Park IY, Park CB, Kim MS, Kim SC (1998) FEBS Lett 437(3):258PubMedCrossRefGoogle Scholar
  4. 4.
    Frau J, Hernández-Haro N, Glossman-Mitnik D (2017) Chem Phys Lett 671:138CrossRefGoogle Scholar
  5. 5.
    Frau J, Glossman-Mitnik D (2017) Molecules 22(1):226PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chattaraj P (ed) (2009) Chemical reactivity theory—a density functional view. CRC Press, Boca RatonGoogle Scholar
  7. 7.
    Bultinck P, De Winter H, Langenaeker W, Tollenaere JP (eds) (2004) Computational medicinal chemistry for drug discovery. Taylor & Francis, New YorkGoogle Scholar
  8. 8.
    Gore M, Jagtap UB (2018) Computational drug discovery and design. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Gupta GK, Kumar V (2016) Chemical drug design. Walter de Gruyter GmbH, BerlinCrossRefGoogle Scholar
  10. 10.
    Dunn BM (ed) (2015) Peptide chemistry and drug design. Wiley, HobokenGoogle Scholar
  11. 11.
    Castanho M, Santos NC (eds) (2011) Peptide drug discovery and development. Wiley, WeinheimGoogle Scholar
  12. 12.
    Otvos L (ed) (2008) Peptide-based drug design—methods and protocols. Humana Press, TotowaGoogle Scholar
  13. 13.
    Zhou P, Huang J (eds) (2015) Computational peptidology. Humana Press, New YorkGoogle Scholar
  14. 14.
    Tamamura H, Kobayakawa T, Ohashi N (eds) (2018) Mid-size drugs based on peptides and peptidomimetics—a new drug category. Springer, SingaporeGoogle Scholar
  15. 15.
    sunna A, Care A, Bergquist PL (eds) (2017) Peptides and peptide-based biomaterials and their biomedical applications. Springer, ChamGoogle Scholar
  16. 16.
    Lewars E (2003) Computational chemistry—introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  17. 17.
    Young D (2001) Computational chemistry—a practical guide for applying techniques to real-world problems. Wiley, New YorkGoogle Scholar
  18. 18.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, ChichesterGoogle Scholar
  19. 19.
    Cramer C (2004) Essentials of computational chemistry—theories and models, 2nd edn. Wiley, ChichesterGoogle Scholar
  20. 20.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115(8):3540CrossRefGoogle Scholar
  21. 21.
    Chai J, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615PubMedCrossRefGoogle Scholar
  22. 22.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1–3):51CrossRefGoogle Scholar
  23. 23.
    Heyd J, Scuseria G (2004) J Chem Phys 121(3):1187PubMedCrossRefGoogle Scholar
  24. 24.
    Stein T, Kronik L, Baer R (2009) J Chem Phys 131(24):244119PubMedCrossRefGoogle Scholar
  25. 25.
    Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131(8):2818PubMedCrossRefGoogle Scholar
  26. 26.
    Stein T, Eisenberg H, Kronik L, Baer R (2010) Phys Rev Lett 105(26):266802PubMedCrossRefGoogle Scholar
  27. 27.
    Karolewski A, Stein T, Baer R, Kümmel S (2011) J Chem Phys 134(15):151101PubMedCrossRefGoogle Scholar
  28. 28.
    Kuritz N, Stein T, Baer R, Kronik L (2011) J Chem Theory Comput 7(8):2408PubMedCrossRefGoogle Scholar
  29. 29.
    Ansbacher T, Srivastava HK, Stein T, Baer R, Merkx M, Shurki A (2012) Phys Chem Chem Phys 14:4109PubMedCrossRefGoogle Scholar
  30. 30.
    Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) J Chem Theory Comput 8(5):1515PubMedCrossRefGoogle Scholar
  31. 31.
    Stein T, Autschbach J, Govind N, Kronik L, Baer R (2012) J Phys Chem Lett 3(24):3740PubMedCrossRefGoogle Scholar
  32. 32.
    Frau J, Glossman-Mitnik D (2018) Molecules 23(3):559PubMedCentralCrossRefGoogle Scholar
  33. 33.
    Frau J, Glossman-Mitnik D (2018) Theor Chem Acc 137(5):1210CrossRefGoogle Scholar
  34. 34.
    Frau J, Glossman-Mitnik D (2018) Front Chem 6(136):1Google Scholar
  35. 35.
    Frau J, Glossman-Mitnik D (2018) Contemp Chem 1(1):1Google Scholar
  36. 36.
    Frau J, Glossman-Mitnik D (2018) Comput Theor Chem 1134:22CrossRefGoogle Scholar
  37. 37.
    Frau J, Glossman-Mitnik D (2018) Chem Sci Int J 22(4):1CrossRefGoogle Scholar
  38. 38.
    Frau J, Glossman-Mitnik D (2018) J Mol Model 24(138):1Google Scholar
  39. 39.
    Frau J, Flores-Holguín N, Glossman-Mitnik D (2018) Mar Drugs 16(9):302PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Halgren TA (1996) J Comput Chem 17(5–6):490CrossRefGoogle Scholar
  41. 41.
    Halgren TA (1996) J Comput Chem 17(5–6):520CrossRefGoogle Scholar
  42. 42.
    Halgren TA (1999) J Comput Chem 20(7):720CrossRefGoogle Scholar
  43. 43.
    Halgren TA, Nachbar RB (1996) J Comput Chem 17(5–6):587Google Scholar
  44. 44.
    Halgren TA (1996) J Comput Chem 17(5–6):616CrossRefGoogle Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 09 Revision E.01. Gaussian Inc., WallingfordGoogle Scholar
  46. 46.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297PubMedCrossRefGoogle Scholar
  47. 47.
    Weigend F (2006) Phys Chem Chem Phys 8:1057PubMedCrossRefGoogle Scholar
  48. 48.
    Marenich A, Cramer C, Truhlar D (2009) J Phys Chem B 113:6378PubMedCrossRefGoogle Scholar
  49. 49.
    Henderson TM, Izmaylov AF, Scalmani G, Scuseria GE (2009) J Chem Phys 131(4):044108PubMedCrossRefGoogle Scholar
  50. 50.
    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2(21):2810CrossRefGoogle Scholar
  51. 51.
    Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(47):16187PubMedCrossRefGoogle Scholar
  52. 52.
    Chai J, Head-Gordon M (2008) J Chem Phys 128:084106PubMedCrossRefGoogle Scholar
  53. 53.
    Parr R, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922CrossRefGoogle Scholar
  54. 54.
    Gázquez J, Cedillo A, Vela A (2007) J Phys Chem A 111(10):1966PubMedCrossRefGoogle Scholar
  55. 55.
    Chattaraj P, Chakraborty A, Giri S (2009) J Phys Chem A 113(37):10068PubMedCrossRefGoogle Scholar
  56. 56.
    Toro-Labbé A (ed) (2007) Theoretical aspects of chemical reactivity. Elsevier, AmsterdamGoogle Scholar
  57. 57.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205PubMedCrossRefGoogle Scholar
  58. 58.
    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342CrossRefGoogle Scholar
  59. 59.
    Martínez-Araya JI (2012) J Mol Model 18:4299PubMedCrossRefGoogle Scholar
  60. 60.
    Martínez-Araya JI (2012) J Mol Model 19(7):2715PubMedCrossRefGoogle Scholar
  61. 61.
    Martínez-Araya JI (2015) J Math Chem 53(2):451CrossRefGoogle Scholar
  62. 62.
    Domingo LR, Pérez P, Sáez J (2013) RSC Adv 3:1486CrossRefGoogle Scholar
  63. 63.
    Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141CrossRefGoogle Scholar
  64. 64.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748PubMedCentralCrossRefGoogle Scholar
  65. 65.
    Domingo LR, Perez P (2011) Org Biomol Chem 9:7168PubMedCrossRefGoogle Scholar
  66. 66.
    Rahbar S, Figarola JL (2003) Arch Biochem Biophys 419:63PubMedCrossRefGoogle Scholar
  67. 67.
    Peyroux J, Sternberg M (2006) Pathol Biol 54:405PubMedCrossRefGoogle Scholar
  68. 68.
    Leeson P (2012) Nature 481(7382):455PubMedCrossRefGoogle Scholar
  69. 69.
    Santos GB, Ganesan A, Emery FS (2016) ChemMedChem 11(20):2245PubMedCrossRefGoogle Scholar
  70. 70.
    Martin YC (2005) J Med Chem 48(9):3164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosChihuahuaMexico
  2. 2.Departament de QuímicaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations