Advertisement

A theoretical research on intersystem crossing, radiative and nonradiative rates of cyclometalated platinum(II) complexes

  • Baozhu YangEmail author
  • Shuang Huang
  • Shiping Luo
Regular Article
  • 74 Downloads

Abstract

A series of cyclometalated platinum(II) complexes with similar molecular structures but distinct phosphorescence quantum yields were investigated. To explore the intersystem crossing (ISC) and radiative decay processes, we investigated the absorption and phosphorescence properties, spin–orbit coupling matrix elements, major ISC channels and phosphorescent transition rates. For the temperature-dependent nonradiative decay processes, the metal-centered excited states (3MC), the transition states, and the minimum energy crossing points were investigated with theoretical calculations. The way of temperature-independent nonradiative decay which has weak influence on nonradiative decay rate was also compared through the calculation of reorganization energy (λ).

Keywords

Spin–orbit coupling Intersystem crossing Quantum yield Platinum(II) complex Phosphorescence Excited state 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Number 11404041). Thanks to the institute of Theoretical Chemistry of Jilin University, the High Performance Computation Laboratory of Changzhou University, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Changzhou University.

Supplementary material

214_2019_2466_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1443 kb)

References

  1. 1.
    Chou P-T, Chi Y, Chung M-W, Lin C-C (2011) Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coord Chem Rev 255:2653–2665CrossRefGoogle Scholar
  2. 2.
    Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537CrossRefGoogle Scholar
  3. 3.
    Yip AM-H, Lo KK-W (2018) Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or biorthogonal reaction group as biological probes and photocytotoxic agents. Coord Chem Rev 361:138–163CrossRefGoogle Scholar
  4. 4.
    Beldjoudi Y, Nascimento MA, Cho YJ, Yu H, Aziz H, Tonouchi D, Eguchi K, Matsushita MM, Awaga K, Roman IO, Constantinides CP, Rawson JM (2018) Multifunctional dithiadiazolyl radicals: fluorescence, electroluminescence, and photoconducting behavior in pyren-1′-yl-dithiadiazolyl. J Am Chem Soc 140:6260–6270CrossRefGoogle Scholar
  5. 5.
    Lam WH, Lam ESH, Yam VWW (2013) Computational studies on the excited states of luminescent platinum(II) alkynyl systems of tridentate pincer ligands in radiative and nonradiative processes. J Am Chem Soc 135:15135–15143CrossRefGoogle Scholar
  6. 6.
    Borozdina YB, Kamm V, Laquai F, Baumgarten M (2012) Tuning the sensitivity of fluorophore–nitroxide radicals. J Mater Chem 22:13260–13267CrossRefGoogle Scholar
  7. 7.
    Spencer M, Santoro A, Freeman GR, Díez Á, Murray PR, Torroba J, Whitwood AC, Yellowlees LJ, Williams JAG, Bruce DW (2012) Phosphorescent, liquid-crystalline complexes of platinum(II): influence of the β-diketonate co-ligand on mesomorphism and emission properties. Dalton Trans 41:14244–14256CrossRefGoogle Scholar
  8. 8.
    Escudero D (2016) Quantitative prediction of photoluminescence quantum yields of phosphors from first principles. Chem Sci 7:1262–1267CrossRefGoogle Scholar
  9. 9.
    Escudero D, Jacquemina D (2015) Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Trans 44:8346–8355CrossRefGoogle Scholar
  10. 10.
    Yang B, Huang S, Zhong J, Zhang H (2015) Computational studies on the radiative and nonradiative processes of luminescent N-heteroleptic platinum(II) complexes. Org Electron 19:7–14CrossRefGoogle Scholar
  11. 11.
    Rossi E, Colombo A, Dragonetti C, Roberto D, Ugo R, Valore A, Falciola L, Brulatti P, Cocchi M, Williams JAG (2012) Novel N^ C^ N-cyclometallated platinum complexes with acetylide co-ligands as efficient phosphors for OLEDs. J Mater Chem 22:10650–10655CrossRefGoogle Scholar
  12. 12.
    Schmidt K, Brovelli S, Coropceanu V, Beljonne D, Cornil J, Bazzini C, Caronna T, Tubino R, Meinardi F, Shuai Z, Brédas J-L (2007) Intersystem crossing processes in nonplanar aromatic heterocyclic molecules. J Phys Chem A 111:10490–10499CrossRefGoogle Scholar
  13. 13.
    Lawetz V, Orlandi G, Siebrand JW (1972) Theory of intersystem crossing in aromatic hydrocarbons. Chem Phys 56:4058–4072Google Scholar
  14. 14.
    Robinson GW, Frosch RP (1963) Electronic excitation transfer and relaxation. J Chem Phys 38:1187–1203CrossRefGoogle Scholar
  15. 15.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5003CrossRefGoogle Scholar
  16. 16.
    Li EY-T, Jiang T-Y, Chi Y, Chou P-T (2014) Semi-quantitative assessment of the intersystem crossing rate: an extension of the El-Sayed rule to the emissive transition metal complexes. Phys Chem Chem Phys 16:26184–26192CrossRefGoogle Scholar
  17. 17.
    Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203CrossRefGoogle Scholar
  18. 18.
    Murphy L, Williams JAG (2010) Luminescent platinum compounds: from molecules to OLEDs. Top Organomet Chem 28:75–111CrossRefGoogle Scholar
  19. 19.
    Williams JAG (2007) Photophysics and photochemistry of coordination compounds: platinum. Top Curr Chem 281:205–268CrossRefGoogle Scholar
  20. 20.
    Puttock V, Walden MT, Williams JAG (2018) The luminescence properties of multinuclear platinum complexes. Coord Chem Rev 367:127–162CrossRefGoogle Scholar
  21. 21.
    Chow P-K, Cheng G, Tong GSM, To W-P, Kwong W-L, Low K-H, Kwok C-C, Ma C, Che C-M (2015) Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C–C bond formation, and materials applications. Angew Chem Int Ed 54:2084–2089CrossRefGoogle Scholar
  22. 22.
    Li K, Tong GSM, Wan Q, Cheng G, Tong WY (2016) Highly phosphorescent platinum(II) emitters: photophysics, materials and biological applications. Chem Sci 7:1653–1673CrossRefGoogle Scholar
  23. 23.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  24. 24.
    Casida ME, Jamorski C, Casida KC (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  25. 25.
    Frisch MJ et al (2010) Gaussian 09, revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  26. 26.
    Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037CrossRefGoogle Scholar
  27. 27.
    Barone V, Polimeno A (2007) Integrated computational strategies for UV/vis spectra of large molecules in solution. Chem Soc Rev 36:1724–1731CrossRefGoogle Scholar
  28. 28.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167CrossRefGoogle Scholar
  31. 31.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  32. 32.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  34. 34.
    Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289CrossRefGoogle Scholar
  35. 35.
    Huang S, Yang B, Zhong J, Zhang H (2015) A theoretical investigation on the metal–metal interaction in a series of pyrazolate bridged platinum(II) complexes. Synth Met 205:222–227CrossRefGoogle Scholar
  36. 36.
    Yang B, Huang S, Zhong J, Zhang H (2015) A comparison of excited state properties between two different N-heterocyclic platinum(II) complexes. J Mol Struct 1097:23–28CrossRefGoogle Scholar
  37. 37.
    Yang B, Zhang Q, Zhong J, Huang S, Zhang H (2012) Substituent effect of fluorine ligand on spectroscopic properties of Pt (N^ C^ N) Cl complexes, a theoretical study. Org Electron 13:2568–2574CrossRefGoogle Scholar
  38. 38.
    Yang B, Zhang Q, Zhong J, Huang S, Zhang H (2012) Time-dependent density functional theory investigate the effect of arylacetylide chain length of cyclometalated Pt(II) complexes. Synth Met 162:670–676CrossRefGoogle Scholar
  39. 39.
    Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  40. 40.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  41. 41.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  42. 42.
    Francl MM, Pietro WJ, Hehre WJ (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  43. 43.
    Yang B, Zhang Q, Zhong J, Huang S, Zhang H (2012) Ab initio and DFT study of luminescent cyclometalated N-heterocyclic carbene organogold(III) complexes. J Mol Model 18:2543–2551CrossRefGoogle Scholar
  44. 44.
    Yang B, Zhang M, Zhang H, Sun J-Z (2011) Theoretical study on the influence of ancillary ligand on the energy and optical properties of heteroleptic phosphorescent Ir(III) complexes. J Lumin 131:1158–1163CrossRefGoogle Scholar
  45. 45.
    Gao X, Bai S, Fazzi D, Niehaus T, Barbatti M, Thiel W (2017) Evaluation of spin–orbit couplings with linear-response time-dependent density functional methods. J Chem Theory Comput 13:515–524CrossRefGoogle Scholar
  46. 46.
    Chiodo SG, Leopoldini M (2014) MolSOC: a spin–orbit coupling code. Comput Phys Commun 185:676–683CrossRefGoogle Scholar
  47. 47.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  48. 48.
    Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Ågren H et al (2014) The Dalton quantum chemistry program system. WIREs Comput Mol Sci 4:269–284CrossRefGoogle Scholar
  49. 49.
    Guido CA, Cortona P, Mennucci B, Adamo C (2013) On the metric of charge transfer molecular excitations: a simple chemical descriptor. J Chem Theory Comput 9:3118–3126CrossRefGoogle Scholar
  50. 50.
    Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Gr 14:33–38CrossRefGoogle Scholar
  51. 51.
    Harvey JN, Aschi M (1999) Spin-forbidden dehydrogenation of methoxy cation: a statistical view. Phys Chem Chem Phys 1:5555–5563CrossRefGoogle Scholar
  52. 52.
    Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99CrossRefGoogle Scholar
  53. 53.
    Tatchen J, Waletzke M, Marian CM (2001) The photophysics of pyranthione: a theoretical investigation focussing on spin-forbidden transitions. Chem Phys 264:245–254CrossRefGoogle Scholar
  54. 54.
    Wiggins P, Williams JAG, Tozer DJ (2009) Excited state surfaces in density functional theory: a new twist on an old problem. J Chem Phys 131:091101–091104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  2. 2.School of Mathematics and PhysicsChangzhou UniversityChangzhouChina

Personalised recommendations