Advertisement

The density response kernel, the Fukui function, and other response functions from the Kohn–Sham orbitals

  • Andrés CedilloEmail author
Regular Article
  • 68 Downloads

Abstract

A novel approach to the response theory for the Kohn–Sham formalism is presented, and it shows that the linear responses of the electron density to changes in the number of electrons and in the external potential connected and they can be computed simultaneously. This procedure also applies to other quantities related to the density response kernel, such as the Hessian matrix, the dipole polarizability, and the perturbed density. Expressions for the directional Fukui functions go beyond the frontier orbital approximation, showing differential relaxation effects for electron-releasing and electron-withdrawing processes. Even for the simplest approximation, when only the frontier orbitals are included in the sum-over-states, the relaxation effects are different in each direction.

Keywords

Chemical reactivity Response functions Fukui function Dipole polarizability 

Notes

Acknowledgements

This work was partially supported by CONACYT Grant 237045.

References

  1. 1.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871CrossRefGoogle Scholar
  2. 2.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Gross EKU, Dreizler R (1993) Density functional theory. Springer, BerlinGoogle Scholar
  4. 4.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289–320CrossRefGoogle Scholar
  5. 5.
    Jones RO (2015) Rev Mod Phys 87:897–923CrossRefGoogle Scholar
  6. 6.
    Pribram-Jones A, Gross DA, Burke K (2015) Annu Rev Phys Chem 66:283–304CrossRefGoogle Scholar
  7. 7.
    McWeeny R (1992) Methods of molecular quantum mechanics, 2nd edn. Academic Press, New YorkGoogle Scholar
  8. 8.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  9. 9.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  10. 10.
    Ayers P, Andreson L, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534CrossRefGoogle Scholar
  11. 11.
    Cedillo A (2006) In: Toro-Labbé A (ed) Theoretical aspects of chemical reactivity. Elsevier, New York, pp 27–35Google Scholar
  12. 12.
    Gázquez JL (2008) J Mex Chem Soc 52:3–10Google Scholar
  13. 13.
    Liu SB (2009) Acta Phys Chim Sin 25:590–600Google Scholar
  14. 14.
    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764Google Scholar
  15. 15.
    De Proft F, Geerlings P, Ayers PW (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley, Darmstadt, pp 233–270CrossRefGoogle Scholar
  16. 16.
    Michalak A, De Proft F, Geerlings P, Nalewajski RF (1999) J Phys Chem A 103:762–771CrossRefGoogle Scholar
  17. 17.
    Ayers PW (2001) Theor Chem Acc 106:271–279CrossRefGoogle Scholar
  18. 18.
    Balawender R, Geerlings P (2005) J Chem Phys 123:124102CrossRefGoogle Scholar
  19. 19.
    Balawender R, Geerlings P (2005) J Chem Phys 123:124103CrossRefGoogle Scholar
  20. 20.
    Ayers PW, De Proft F, Borgoo A, Geerlings P (2007) J Chem Phys 126:224107CrossRefGoogle Scholar
  21. 21.
    Sablon N, De Proft F, Ayers PW, Geerlings P (2007) J Chem Phys 126:224108CrossRefGoogle Scholar
  22. 22.
    Flores-Moreno R, Melin J, Ortiz JV, Merino G (2008) J Chem Phys 129:224105CrossRefGoogle Scholar
  23. 23.
    Liu SB, Li TL, Ayers PW (2009) J Chem Phys 131:114106CrossRefGoogle Scholar
  24. 24.
    Yang W, Cohen AJ, De Proft F, Geerlings P (2012) J Chem Phys 136:144110CrossRefGoogle Scholar
  25. 25.
    Fias S, Boisdenghien Z, De Proft F, Geerlings P (2014) J Chem Phys 141:184107CrossRefGoogle Scholar
  26. 26.
    Fias S, Heidar-Zadeh F, Geerlings P, Ayers PW (2017) Proc Natl Acad Sci 114:11633–11638CrossRefGoogle Scholar
  27. 27.
    Senet P (1996) J Chem Phys 105:6471–6489CrossRefGoogle Scholar
  28. 28.
    Senet P (1997) J Chem Phys 107:2516–2524CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Phys Rev Lett 49:1691–1694CrossRefGoogle Scholar
  30. 30.
    Savin A, Umrigar C, Gonze X (1998) Chem Phys Lett 288:391–395CrossRefGoogle Scholar
  31. 31.
    Ayers PW, Morrison RC, Parr RG (2005) Mol Phys 103:2061–2072CrossRefGoogle Scholar
  32. 32.
    Cohen AJ, Mori-Sanchez P, Yang W (2008) Phys Rev B 77:115123CrossRefGoogle Scholar
  33. 33.
    Zheng X, Cohen AJ, Mori-Sanchez P, Hu XQ, Yang W (2011) Phys Rev Lett 107:026403CrossRefGoogle Scholar
  34. 34.
    Zhang YK, Yang W (2000) Theor Chem Acc 103:346–348CrossRefGoogle Scholar
  35. 35.
    Ayers PW (2008) J Math Chem 43:285–303CrossRefGoogle Scholar
  36. 36.
    Cedillo A (1994) Int J Quantum Chem 52(S28):231–240CrossRefGoogle Scholar
  37. 37.
    Cohen MH, Ganduglia-Pirovano MV, Kudrnovsky J (1994) J Chem Phys 101:8988–8997CrossRefGoogle Scholar
  38. 38.
    Cohen MH, Ganduglia-Pirovano MV, Kudrnovsky J (1995) J Chem Phys 103:3543–3551CrossRefGoogle Scholar
  39. 39.
    Riley KF, Hobson MP, Bence SJ (2006) Mathematical methods for physics and engineering, 3rd edn. Cambridge University Press, Cambridge, pp 807–808CrossRefGoogle Scholar
  40. 40.
    Gerald CF, Wheatley PO (2004) Applied numerical analysis, 7th edn. Pearson-Wesley, Boston, pp 103–104Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico

Personalised recommendations