Ab initio investigation of cationic water cluster (H2O) 13 + via particle swarm optimization algorithm

  • Yi-Ming Wen
  • Shuai-Kang Zhang
  • Cui-E HuEmail author
  • Yan ChengEmail author
Regular Article


The configurations of cationic water cluster (H2O) 13 + have been explored through the particle swarm optimization algorithm conjunct with computational quantum chemistry approaches. Geometry optimization and vibrational analysis for the 15 possible low-lying clusters were calculated at the MPW1K/6–31++G** level as well as infrared spectrum calculation. Through various hybrid exchange–correlation functionals of density functional theory in combination with zero-point vibrational energies correction, we can definitely get the relative stable configurations and discuss the effect on the relative energy order of these clusters caused by different functionals in detail. Given the effect of temperature, it is found that as the temperature rises, the configuration with irregular shape will become more stable. By analyzing the infrared spectra, the structure and vibration analysis of these clusters are studied in detail. Based on topological analysis, we study the relationship between structural characteristics and the bonding strengths, and analyze the strength of hydrogen bonding at the bond critical points.


(H2O)13+ cluster Isomers Infrared spectra Hydrogen bonding 



The authors would like to thank the supports by the Science Challenge Project (Grant No. TZ2016001) and the National Natural Science Foundation of China (Grant No. 11504035). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University.


  1. 1.
    Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750CrossRefGoogle Scholar
  2. 2.
    Hammond JR, Govind N, Kowalski K, Autschbach J, Xantheas SS (2009) Accurate dipole polarizabilities for water clusters n = 2–12 at the coupled-cluster level of theory and benchmarking of various density functionals. J Chem Phys 131:214103CrossRefGoogle Scholar
  3. 3.
    James T, Wales DJ, Hernández-Rojas J (2005) Global minima for water clusters (H2O)(n), n ≤ 21, described by a five-site empirical potential. Chem Phys Lett 415:302–307CrossRefGoogle Scholar
  4. 4.
    Liu XJ, Lu WC, Wang CZ, Ho KM (2011) Energetic and fragmentation stability of water clusters (H2O)(n), n = 2–30. Chem Phys Lett 508:270–275CrossRefGoogle Scholar
  5. 5.
    Wiggins PM (1990) Role of water in some biological processes. Microbiol Rev 54:432–449PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kang D, Dai J, Hou Y, Yuan J (2010) Structure and vibrational spectra of small water clusters from first principles simulations. J Chem Phys 133:014302CrossRefGoogle Scholar
  7. 7.
    Pérez C, Pate BH (2012) Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336:897–901CrossRefGoogle Scholar
  8. 8.
    Wang Y, Babin V, Bowman JM, Paesani F (2012) The water hexamer: cage, prism, or both. Full dimensional quantum simulations say both. J Am Chem Soc 134:11116–11119CrossRefGoogle Scholar
  9. 9.
    Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF (2009) Water dimer radical cation: structures, vibrational frequencies, and energetics. J Phys Chem A 113:13779–13789CrossRefGoogle Scholar
  10. 10.
    Jongma RT, Huang YH, Shi SM, Wodtke AM (1998) Rapid evaporative cooling suppresses fragmentation in mass spectrometry: Synthesis of “Unprotonated” water cluster ions. J Phys Chem A 102:8847–8854CrossRefGoogle Scholar
  11. 11.
    Periyasamy G, Levine RD, Remacle F (2009) Electronic wave packet motion in water dimer cation: a many electron description. Chem Phys 366:129–138CrossRefGoogle Scholar
  12. 12.
    Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper-bipyridine water-oxidation electrocatalyst. Nat Chem 4:498–502CrossRefGoogle Scholar
  13. 13.
    Gagliardi CJ, Vannucci AK, Concepcion JJ, Chen ZF, Meyer TJ (2012) The role of proton coupled electron transfer in water oxidation. Energy Environ Sci 5:7704–7717CrossRefGoogle Scholar
  14. 14.
    Moonshiram D, Jurss JW, Concepcion JJ, Zakharova T, Alperovich I, Meyer TJ, Pushkar Y (2012) Structure and electronic configurations of the intermediates of water oxidation in blue ruthenium dimer catalysis. J Am Chem Soc 134:4625–4636CrossRefGoogle Scholar
  15. 15.
    Sundstrom EJ, Yang XZ, Thoi VS, Karunadasa HI, Chang CJ, Long JR, Head-Gordon M (2012) Computational and experimental study of the mechanism of hydrogen generation from water by a molecular molybdenum-oxo electrocatalyst. J Am Chem Soc 134:5233–5242CrossRefGoogle Scholar
  16. 16.
    Herr JD, Steele RP (2016) Ion–radical pair separation in larger oxidized water clusters, (H2O)(+) n = 6–21. J Phys Chem A 120:7225–7239CrossRefGoogle Scholar
  17. 17.
    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998) Radiation yield of oxygen-based radicals in hyperquenched glassy water gamma-irradiated at 77 K. Radiat Phys Chem 53:635–638CrossRefGoogle Scholar
  18. 18.
    Shinohara H, Nishi N, Washida N (1986) Photoionization of water clusters at 11.83 Ev—observation of unprotonated cluster ions (H2O)n+ (2 ≤ n ≤ 10). J Chem Phys 84:5561–5567CrossRefGoogle Scholar
  19. 19.
    Brommer M, Weis B, Follmeg B, Rosmus P, Carter S, Handy NC, Werner HJ, Knowles PJ (1993) Theoretical spin–rovibronic 2A1(πu)–2B1 spectrum of the H2O+, HDO+, and D2O+ cations. J Chem Phys 98:5222–5234CrossRefGoogle Scholar
  20. 20.
    Eroms M, Jungen M, Meyer HD (2010) Nonadiabatic nuclear dynamics after valence ionization of H2O. J Phys Chem A 114:9893–9901CrossRefGoogle Scholar
  21. 21.
    Roth D, Dopfer O, Maier JP (2001) Intermolecular potential energy surface of the proton-bound H2O + -He dimer: Ab initio calculations and IR spectra of the O–H stretch vibrations. Phys Chem Chem Phys 3:2400–2410CrossRefGoogle Scholar
  22. 22.
    Do H, Besley NA (2013) Proton transfer or hemibonding? The structure and stability of radical cation clusters. Phys Chem Chem Phys 15:16214–16219CrossRefGoogle Scholar
  23. 23.
    Lee HM, Kim KS (2013) Water dimer cation: density functional theory vs. ab initio theory. J Comput Chem 34:1589–1597CrossRefGoogle Scholar
  24. 24.
    Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) Degree of initial hole localization/delocalization in ionized water clusters. J Phys Chem A 112:6159–6170CrossRefGoogle Scholar
  25. 25.
    Tsai M-K, Kuo J-L, Lu J-M (2012) The dynamics and spectroscopic fingerprint of hydroxyl radical generation through water dimer ionization: ab initio molecular dynamic simulation study. Phys Chem Chem Phys 14:13402–13408CrossRefGoogle Scholar
  26. 26.
    McCoy AB, Diken EG, Johnson MA (2009) Spectroscopic study of the ion–radical H-bond in H4O2 +. J Phys Chem A 113:7346–7352CrossRefGoogle Scholar
  27. 27.
    Lee HM, Kim KS (2009) Water dimer cation: density functional theory vs. ab initio theory. J Chem Theory Comput 5:976–981CrossRefGoogle Scholar
  28. 28.
    Herr JD, Talbot J, Steele RP (2015) Structural progression in clusters of ionized water, (H2O)(n = 1–5)(+). J Phys Chem A 119:752–766CrossRefGoogle Scholar
  29. 29.
    Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010) Spectroscopic signatures of proton transfer dynamics in the water dimer cation. J Chem Phys 132:194311CrossRefGoogle Scholar
  30. 30.
    Stillinger FH (1999) Exponential multiplicity of inherent structures. Phys Rev E 59:48–51CrossRefGoogle Scholar
  31. 31.
    Wales DJ, Doye JPK (2003) Stationary points and dynamics in high-dimensional systems. J Chem Phys 119:12409–12416CrossRefGoogle Scholar
  32. 32.
    Mizuse K, Fujii A (2013) Characterization of a solvent-separated ion–radical pair in cationized water networks: infrared photodissociation and Ar-attachment experiments for water cluster radical cations (H2O)(n)(+) (n = 3–8). J Phys Chem A 117:929–938CrossRefGoogle Scholar
  33. 33.
    Mizuse K, Fujii A (2011) Structural trends of ionized water networks: infrared spectroscopy of water cluster radical cations (H2O)(n)(+) (n = 3–11). Phys Chem Chem Phys 13:7129–7135CrossRefGoogle Scholar
  34. 34.
    Do H, Besley NA (2013) Structure and bonding in ionized water clusters. J Phys Chem A 117:5385–5391CrossRefGoogle Scholar
  35. 35.
    Lu E-P, Pan P-R, Li Y-C, Tsai M-K, Kuo J-L (2014) Structural evolution and solvation of the OH radical in ionized water radical cations (H2O)(n)(+), n = 5–8. Phys Chem Chem Phys 16:18888–18895CrossRefGoogle Scholar
  36. 36.
    Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014) Ab initio investigation of the lower energy candidate structures for (H2O)(5)+ water cluster. J Chem Phys 141:054309CrossRefGoogle Scholar
  37. 37.
    Shi R, Huang X, Su Y, Lu H-G, Li S-D, Tang L, Zhao J (2017) Which density functional should be used to describe protonated water clusters? J Phys Chem A 121:3117–3127CrossRefGoogle Scholar
  38. 38.
    Shi RL, Li KY, Su Y, Tang LL, Huang XM, Sai LW, Zhao JJ (2018) Revisit the landscape of protonated water clusters H+(H2O)n with n = 10–17: an ab initio global search. J Chem Phys 148:174305CrossRefGoogle Scholar
  39. 39.
    Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell RW, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo-Merchan J, Gomperts R, Stratmann K, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D, R. A. (2009) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  41. 41.
    Lv J, Wang YC, Zhu L, Ma YM (2012) Particle-swarm structure prediction on clusters. J Chem Phys 137:084104CrossRefGoogle Scholar
  42. 42.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675CrossRefGoogle Scholar
  43. 43.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104:4811–4815CrossRefGoogle Scholar
  44. 44.
    Bally T, Sastry GN (1997) Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A 101:7923–7925CrossRefGoogle Scholar
  45. 45.
    Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999) Ground state of the (H2O)(2)(+) radical cation: DFT versus post-Hartree–Fock methods. J Phys Chem A 103:166–170CrossRefGoogle Scholar
  46. 46.
    Zhang YK, Yang WT (1998) A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons. J Chem Phys 109:2604–2608CrossRefGoogle Scholar
  47. 47.
    Jordan KD, Wang F (2003) Theory of dipole-bound anions. Annu Rev Phys Chem 54:367–396CrossRefGoogle Scholar
  48. 48.
    Fournier JA, Wolke CT, Johnson MA, Odbadrakh TT, Jordan KD, Kathmann SM, Xantheas SS (2015) Snapshots of proton accommodation at a microscopic water surface: understanding the vibrational spectral signatures of the charge defect in cryogenically cooled H+(H2O)(n = 2–28) clusters. J Phys Chem A 119:9425–9440CrossRefGoogle Scholar
  49. 49.
    Jiang J-C, Wang Y-S, Chang H-C, Lin SH, Lee YT, Niedner-Schatteburg G, Chang H-C (2000) Infrared spectra of H + (H2O)(5–8) clusters: evidence for symmetric proton hydration. J Am Chem Soc 122:1398–1410CrossRefGoogle Scholar
  50. 50.
    Vendrell O, Gatti F, Meyer H-D (2007) Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. J Chem Phys 127:184303CrossRefGoogle Scholar
  51. 51.
    Lee HM, Kim KS (2011) Water trimer cation. Theor Chem Acc 130:543–548CrossRefGoogle Scholar
  52. 52.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  53. 53.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  54. 54.
    Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016) Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)(6)+. J Chem Phys 145:154307CrossRefGoogle Scholar
  55. 55.
    Lv ZL, Cheng Y, Chen XR, Cai LC (2015) Structural exploration and properties of (H2O)(4)+ cluster via ab initio in combination with particle swarm optimization method. Chem Phys 452:25–30CrossRefGoogle Scholar
  56. 56.
    Singh NJ, Park M, Min SK, Suh SB, Kim KS (2006) Magic and antimagic protonated water clusters: exotic structures with unusual dynamic effects. Angew Chem Int Ed 45:3795–3800CrossRefGoogle Scholar
  57. 57.
    Miyazaki M, Fujii A, Ebata T, Mikami N (2004) Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304:1134–1137CrossRefGoogle Scholar
  58. 58.
    Devereux M, Popelier PL (2007) The effects of hydrogen-bonding environment on the polarization and electronic properties of water molecules. J Phys Chem A 111:1536–1544CrossRefGoogle Scholar
  59. 59.
    Headrick JM, Diken EG, Walters RS, Hammer NI, Christie RA, Cui J, Myshakin EM, Duncan MA, Johnson MA, Jordan KD (2005) Spectral signatures of hydrated proton vibrations in water clusters. Science 308:1765–1769CrossRefGoogle Scholar
  60. 60.
    Roscioli JR, McCunn LR, Johnson MA (2007) Quantum structure of the intermolecular proton bond. Science 316:249–254CrossRefGoogle Scholar
  61. 61.
    Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794CrossRefGoogle Scholar
  62. 62.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  63. 63.
    Bader RFW (1990) A quantum theory. Clarendon Press, OxfordGoogle Scholar
  64. 64.
    Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen-bonds on the basis of the charge-density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  65. 65.
    Mizuse K, Fujii A (2011) Infrared photodissociation spectroscopy of H+(H2O)(6)center dot M-m (M = Ne, Ar, Kr, Xe, H-2, N-2, and CH4): messenger-dependent balance between H3O+ and H5O2 + core isomers. Phys Chem Chem Phys 13:7129–7135CrossRefGoogle Scholar
  66. 66.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H center dot center dot center dot X (X = H, C, N, O, F, S, Cl, pi) interactions. Chem Eur J 16:2442–2452CrossRefGoogle Scholar
  67. 67.
    Ramirez F, Hadad CZ, Guerra D, David J, Restrepo A (2011) Structural studies of the water pentamer. Chem Phys Lett 507:229–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physical Science and Technology, Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina

Personalised recommendations