Role of intramolecular hydrogen bonds and electron withdrawing groups in the acidity of aldimines and ketimines: a density functional theory study

  • Fernando Aguilar-Galindo
  • Ana María Tuñón
  • Alberto Fraile
  • José Alemán
  • Sergio Díaz-TenderoEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


The role of intramolecular hydrogen bonds and the presence of electron withdrawing groups in the acidity of secondary aldimines and secondary ketimines is investigated by means of density functional theory simulations. We have found that the presence of an intramolecular hydrogen bond can increase the acidity up to ~ 20 kJ mol−1 with respect to structural isomers not showing it. In general, the excess of negative charge in the deprotonated species is hosted by the electron withdrawing group, thus stabilizing the anion and increasing the acidity. Among the studied structures, secondary ketimines, bearing a phenyl group, have shown to present the highest acidity and are therefore potential candidates that would be used for different Michael and nucleophilic additions in the synthesis of important pharmaceutical and natural products.


Intramolecular hydrogen bond Electron withdrawing group Acidity Aldimine Ketimine Density functional theory 



The authors acknowledge the generous allocation of computer time at the Centro de Computación Científica of the Universidad Autonónoma de Madrid (CCC-UAM). This work was partially supported by the projects CTQ2016-76061-P & CTQ2015-64561-R of the Spanish Ministerio de Economía y Competitividad (MINECO). F.A.G. acknowledges the FPI grant associated with the project CTQ2013-43698-P (MINECO). Financial support from the MINECO through the “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377) is also acknowledged.


  1. 1.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76.;2-U CrossRefGoogle Scholar
  3. 3.
    Aleman J, Parra A, Jiang H, Jorgensen KA (2011) Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem Eur J 17(25):6890–6899. CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang Z, Schreiner PR (2009) (Thio)urea organocatalysis-what can be learnt from anion recognition? Chem Soc Rev 38:1187–1198. CrossRefPubMedGoogle Scholar
  5. 5.
    Huang Y, Unni AK, Thadani AN, Rawal VH (2003) Single enantiomers from a chiral-alcohol catalyst. Nature 424:146. CrossRefPubMedGoogle Scholar
  6. 6.
    Badiola E, Fiser B, Gómez-Bengoa E, Mielgo A, Olaizola I, Urruzuno I, García JM, Odriozola JM, Razkin J, Oirabide M, Palomo C (2014) Enantioselective construction of tetrasubstituted stereogenic carbons through Brønsted base catalyzed Michael reactions: α′-hydroxy enones as key enoate equivalent. J Am Chem Soc 136(51):17869–177881. CrossRefPubMedGoogle Scholar
  7. 7.
    Talavera G, Reyes E, Vicario JL, Carrillo L (2012) Cooperative dienamine/hydrogen-bonding catalysis: enantioselective formal [2 + 2] cycloaddition of enals with nitroalkenes. Angew Chem Int Ed 51(17):4104–4107. CrossRefGoogle Scholar
  8. 8.
    Jung CK, Krische MJ (2006) Asymmetric Induction in hydrogen-mediated reductive aldol additions to α-amino aldehydes catalyzed by rhodium: selective formation of syn-stereotriads directed by intramolecular hydrogen-bonding. J Am Chem Soc 128(51):17051–17056. CrossRefPubMedGoogle Scholar
  9. 9.
    Inokuma T, Hoashi Y, Takemoto Y (2006) Thiourea-catalyzed asymmetric michael addition of activated methylene compounds to α, β-unsaturated Imides: dual activation of imide by intra- and intermolecular hydrogen bonding. J Am Chem Soc 128(29):9413–9419. CrossRefPubMedGoogle Scholar
  10. 10.
    Wang P, Li HF, Zhao JZ, Du ZH, Da CS (2017) Organocatalytic enantioselective cross-aldol reaction of o-hydroxyarylketones and trifluoromethyl ketones. Org Lett 19(10):2634–2637. CrossRefPubMedGoogle Scholar
  11. 11.
    Esteban F, Cieslik W, Arpa EM, Guerrero-Corella A, Díaz-Tendero S, Perles J, Fernández-Salas JA, Fraile A, Alemán J (2018) Intramolecular hydrogen bond activation: thiourea- organocatalyzed enantioselective 1,3-dipolar cycloaddition of salicylaldehyde-derived azomethine ylides with nitroalkenes. ACS Catal 8(3):1884–1890. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guerrero-Corella A, Esteban F, Iniesta M, Martín-Somer A, Parra M, Díaz-Tendero S, Fraile A, Alemán J (2018) 2-Hydroxybenzophenone as chemical auxiliary for the activation of ketiminoesters in the highly enantioselective addition to nitroalkenes under bifunctional catalysis. Angew Chem Int Ed 57(19):5350–5354. CrossRefGoogle Scholar
  13. 13.
    Choubane H, Garrido-Castro AF, Alvarado C, Martín-Somer A, Guerrero-Corella A, Daaou M, Díaz-Tendero S, Maestro MC, Fraile A, Alemán A (2018) Intramolecular hydrogen-bond activation for the addition of nucleophilic imines: 2-hydroxybenzophenone as a chemical auxiliary. Chem Commun 54:3399–3402. CrossRefGoogle Scholar
  14. 14.
    Arpa EM, Frías M, Alvarado C, Alemán J, Díaz-Tendero S (2016) Weakly bonded intermediates as a previous step towards highly enantioselectivity iminium type additions of beta-keto-sulfoxides and sulfones. J Mol Catal A Chem 423:308–318. CrossRefGoogle Scholar
  15. 15.
    Martín-Sómer A, Arpa EM, Díaz-Tendero S, Alemán J (2018) A density functional theory study of intramolecular hydrogen bond activation of aza-methylene imines in hydrogen bond bifunctional catalysis. Eur J Org Chem. CrossRefGoogle Scholar
  16. 16.
    Frisch et al (2013) Gaussian 09, revision E.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  17. 17.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241. CrossRefGoogle Scholar
  18. 18.
    Hohenstein EG, Chill ST, Sherrill D (2008) Assessment of the performance of the M05−2X and M06−2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000. CrossRefPubMedGoogle Scholar
  19. 19.
    Thanthirwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J Chem Theory Comput 7(1):88–96. CrossRefGoogle Scholar
  20. 20.
    Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117(47):12590–12600. CrossRefPubMedGoogle Scholar
  21. 21.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218. CrossRefGoogle Scholar
  22. 22.
    NBO Version 3.1, Glendening ED, Reed AE, Carpenter JE, Weinhold FGoogle Scholar
  23. 23.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  24. 24.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. CrossRefGoogle Scholar
  25. 25.
    AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017.
  26. 26.
    Fifen JJ, Dhaouadi Z, Nsangou M (2014) Revision of the thermodynamics of the proton in gas phase. J Phys Chem A 118(46):11090–11097. CrossRefPubMedGoogle Scholar
  27. 27.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. CrossRefPubMedGoogle Scholar
  28. 28.
    Tosovic J, Markovic S, Milenkovic D, Markovic Z (2016) Solvation enthalpies and Gibbs energies of the proton and electron—influence of solvation models. J Serb Soc Comput Mech 10:66–76. CrossRefGoogle Scholar
  29. 29.
    Markovic Z, Tosovic J, Milenkovic D, Markovic S (2016) Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput Theor Chem 1077:11–17. CrossRefGoogle Scholar
  30. 30.
    Aguilar-Galindo F, Ocón P, Poyato JML (2017) Exploring the catalytic efficiency of X-doped (X = B, N, P) graphene in oxygen reduction reaction: influence of solvent and border effects. Int J Quantum Chem 118:e25579. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Química, OrgánicaUniversidad Autónoma de MadridMadridSpain
  3. 3.Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadridSpain
  4. 4.Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain

Personalised recommendations