Advertisement

Enhanced luminescence efficiency of structurally tailored new coumarin-based heterocyclic organic materials: a DFT/TD-DFT study

  • Antony Paulraj Bella
  • Rajadurai Vijay Solomon
  • Swaminathan Angeline Vedha
  • Johnson Princy MerlinEmail author
Regular Article
  • 42 Downloads

Abstract

Recently reported coumarin-biphenyl derivatives by Zhang et al. for luminescent materials have paved the road to tune new structurally tailored coumarin-heterocyclic π-linker-based derivatives (COB) with enhanced luminescence efficiency. Herein, a series of heterocyclic π-linkers (bi-furan, bi-thiophene and bi-pyrrole) have been used to design nine new Donor–π-linker–Donor molecules, and their luminescence efficiency has been evaluated using density functional theory and time-dependent density functional theory calculations and compared with their biphenyl derivatives. Frontier molecular orbital analysis has been carried out to gain insights into the role of different groups towards the HOMO and LUMO of the molecule. The calculated excited-state properties such as absorption and emission spectra have proved their pronounced luminescence efficiency. The lowest singlet–triplet energy gap (ΔEST) confirms their thermally activated delayed fluorescence property. All the newly designed COB compounds have been studied for their charge injection/transport properties such as ionization potential, electron affinity, reorganization energy, hole/electron mobility and their light harvesting efficiency. Overall, the study highlights a fine correlation between the computed luminescence properties and HOMO–LUMO energy gap, which portrays the prominent role of hetero cyclic π-linkers on the photophysical properties of COB derivatives.

Keywords

Coumarin π-linkers HOMO LUMO DFT TDDFT TADF 

Notes

Acknowledgements

AB sincerely acknowledges the Department of Science and Technology (DST), New Delhi, India, for the financial support through the DST-Women Scientist-A (WOS-A) Project (Ref. No. SR/WOS-A/CS-22/2016), and AB records sincere thanks to the management of Bishop Heber College, for extending facilities through DST-FIST Instrumentation center (HAIF) BHC. RVS thanks DST-SERB for the computational facilities through Early Career Research Award (Ref. No. DST-SERB/ECR/2017/001147).The encouragement and support from Dr. P. Wilson, Head, Department of Chemistry and the management of Madras Christian College, is gratefully acknowledged by RVS.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

214_2019_2448_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2620 kb)

References

  1. 1.
    Li D, Zhang H, Wang Y (2013) Chem Soc Rev 42(21):8416–8433CrossRefGoogle Scholar
  2. 2.
    Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J (2012) Chem Soc Rev 41:3878–3896CrossRefGoogle Scholar
  3. 3.
    Li D, Zhang H, Wang C, Huang S, Guo J, Wang Y, Li D, Zhang H, Wang C, Huang S, Guo J, Wang Y (2012) J Mater Chem 22:4319–4328CrossRefGoogle Scholar
  4. 4.
    Steffen A, Tay MG, Batsanov AS, Howard JAK, Beeby A, Vuong KQ, Sun XZ, George MW, Marder TB (2010) Angew Chem Int Ed 49:2349–2353CrossRefGoogle Scholar
  5. 5.
    Shi J, Dai L, Xu L, Shi L, Fang L, Shuang S, Dong C (2012) Org Biomol Chem 10:3852–3858CrossRefGoogle Scholar
  6. 6.
    Jou JH, Kumar S, Agrawal A, Li TH, Sahoo S (2015) J Mater Chem C 3:2974–3002CrossRefGoogle Scholar
  7. 7.
    Duan L, Qiao J, Sun Y, Qiu Y (2011) Adv Mater 23:1137–1144CrossRefGoogle Scholar
  8. 8.
    Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C (2015) Nat Commun 6:8476–9476CrossRefGoogle Scholar
  9. 9.
    Panneerselvam M, Kathiravan A, Solomon RV, Jaccob M (2017) Phys Chem Chem Phys 19(8):6153–6163CrossRefGoogle Scholar
  10. 10.
    Solomon RV, Bella AP, Vedha SA, Venuvanalingam P (2012) Phys Chem Chem Phys 14(41):14229–14237CrossRefGoogle Scholar
  11. 11.
    Jones G, Jackson WR, Choi C, Bergmark WR (1985) J Phys Chem 89:294CrossRefGoogle Scholar
  12. 12.
    Galian RE, Laferrière M, Scaiano JC (2006) J Mater Chem 16:1697CrossRefGoogle Scholar
  13. 13.
    Krasovitskii BM, Bolotin BM (1988) Organic luminescent materials. VCH, WeinheimGoogle Scholar
  14. 14.
    Gao F, Li HR, Yang YY (2000) Dyes Pigments 47:231CrossRefGoogle Scholar
  15. 15.
    Yu TZ, Zhang P, Zhao YL, Zhang H, Meng J, Fan DW, Chen LL, Qiu YQ (2010) Org Electron 11:41–49CrossRefGoogle Scholar
  16. 16.
    Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) Chem Commun 6:569CrossRefGoogle Scholar
  17. 17.
    Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597CrossRefGoogle Scholar
  18. 18.
    Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Sol Energy Mater Sol Cells 77:89CrossRefGoogle Scholar
  19. 19.
    Hara K, Kurashige M, Dan-Oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) New J Chem 27:783CrossRefGoogle Scholar
  20. 20.
    Wang Z, Cui Y, Dan-Oh Y, Kasada C, Shinpo A, Hara K (2008) J Phys Chem C 112:17017Google Scholar
  21. 21.
    Hara K, Dan-Oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H (2004) Langmuir 20:4205CrossRefGoogle Scholar
  22. 22.
    Wang Z, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) J Phys Chem B 109:3907CrossRefGoogle Scholar
  23. 23.
    Zhang H, Chai HF, Yu TZ, Zhao YL, Fan DW (2012) J Fluoresc 22:1509–1512CrossRefGoogle Scholar
  24. 24.
    Xie Y, Han L, Ge CS, Cui YH, Gao JR (2017) Chin Chem Lett 28:285–292CrossRefGoogle Scholar
  25. 25.
    Gordo J, Avó J, Parola AJ, Lima JC, Pereira A, Branco PS (2011) Org Lett 13:5112–5115CrossRefGoogle Scholar
  26. 26.
    Ammar H, Fery-Forgues S, Gharbi RE (2003) Dyes Pigments 57:259–265CrossRefGoogle Scholar
  27. 27.
    Margar SN, Sekar N (2016) J Photochem Photobio A Chem 327:58–70CrossRefGoogle Scholar
  28. 28.
    Han L, Kang R, Zu X, Cui Y, Gao J (2015) Photochem Photobio Sci 14(11):2046–2053CrossRefGoogle Scholar
  29. 29.
    Sánchez-de-Armas R, San Miguel MA, Oviedo J, Sanz JF (2012) Phys Chem Chem Phys 14(1):225–233CrossRefGoogle Scholar
  30. 30.
    Castro MCR, Belsley M, Raposo MMM (2016) Dyes Pigments 131:333–339CrossRefGoogle Scholar
  31. 31.
    Li H, Shi HW, Xu N, Zhang ZJ, Niu Z, Han T, Cheng P (2012) Cryst Growth Des 12(5):2602–2612CrossRefGoogle Scholar
  32. 32.
    Xiao J, Yang B, Wong JI, Liu Y, Wei F, Tan KJ, Boey F (2011) Org Lett 13(12):3004–3007CrossRefGoogle Scholar
  33. 33.
    Zhang H, Luo Q, Mao Y, Zhao Y, Yu T (2017) J Photochem Photobio A Chem 346:10–16CrossRefGoogle Scholar
  34. 34.
    Runge E, Gross EKU (1984) Phys Rev Lett 52:997CrossRefGoogle Scholar
  35. 35.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  36. 36.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B Condens Matter 37:785CrossRefGoogle Scholar
  37. 37.
    Tenderholt AL, Forge QM (2007) Version 2.1. Stanford University, StanfordGoogle Scholar
  38. 38.
    Autschbach J (2009) Chem Phys Chem 10:1757–1760CrossRefGoogle Scholar
  39. 39.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037CrossRefGoogle Scholar
  40. 40.
    Helgaker T, Jørgemsen P (1991) J Chem Phys 95:2595CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  42. 42.
    Perdew JP (1986) Phys Rev B Condens Matter 33:8822CrossRefGoogle Scholar
  43. 43.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CTGoogle Scholar
  45. 45.
    Amiri SS, Makarem S, Ahmar H, Ashenagar S (2016) J Mol Struct 1119:18–24CrossRefGoogle Scholar
  46. 46.
    Solomon RV, Jagadeesan R, Vedha SA, Venuvanalingam P (2014) Dyes Pigments 100:261–268CrossRefGoogle Scholar
  47. 47.
    Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  48. 48.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  49. 49.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  50. 50.
    Lesar A, Milošev I (2009) Chem Phys Lett 483:198–203CrossRefGoogle Scholar
  51. 51.
    Solomon RV, Veerapandian P, Vedha SA, Venuvanalingam P (2012) J Phys Chem A 116:4667–4677CrossRefGoogle Scholar
  52. 52.
    Raj MR, Anandan S, Solomon RV, Venuvanalingam P, Iyer SSK, Ashok Kumar M (2013) J Photochem Photobio A Chem 262:34–44CrossRefGoogle Scholar
  53. 53.
    Shalabi AS, El Mahdy AM, Taha HO, Soliman KA (2015) J Phys Chem Solids 76:22–33CrossRefGoogle Scholar
  54. 54.
    Chaitanya K, Ju XH, Heron BM (2014) RSC Adv 4:26621–26634CrossRefGoogle Scholar
  55. 55.
    Marcus RA (1993) Rev Mod Phys 65:599CrossRefGoogle Scholar
  56. 56.
    Jin RF (2016) RSC Adv 6(110):108209–108216CrossRefGoogle Scholar
  57. 57.
    Marcus RA (1964) Annu Rev Phys Chem 15(1):155–196CrossRefGoogle Scholar
  58. 58.
    Gajalakshmi D, Solomon RV, Tamilmani V, Boobalan M, Venuvanalingam P (2015) RSC Adv 5:50353–50364CrossRefGoogle Scholar
  59. 59.
    Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:2339–2350CrossRefGoogle Scholar
  60. 60.
    Geng Y, Li HB, Wu SX, Su ZM (2012) Mater Chem 22:20840–20851CrossRefGoogle Scholar
  61. 61.
    Sun H, Hu Z, Zhong C, Chen X, Sun Z, Brédas JL (2017) J Phys Chem Lett 8(11):2393–2398CrossRefGoogle Scholar
  62. 62.
    Guo J, Li XL, Nie H, Luo W, Hu R, Qin A, Tang BZ (2017) Chem Mater 29(8):3623–3631CrossRefGoogle Scholar
  63. 63.
    Samanta PK, Kim D, Coropceanu V, Brédas JL (2017) J Am Chem Soc 139(11):4042–4051CrossRefGoogle Scholar
  64. 64.
    Hwang S, Lee JH, Park C, Lee H, Kim C, Park C, Lee M-H, Lee W, Park J, Kim K (2007) Chem Commun 46:4887–4889CrossRefGoogle Scholar
  65. 65.
    Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2014) Spectrochim Acta A Mol Biomol Spectrosc 132:232–238CrossRefGoogle Scholar
  66. 66.
    Minjie L, Li K, Ling D, Qing Z, Zhonggao L, Qiang W, Wencong L, Dengyu P, Zhen W (2015) J Phys Chem C 119:9782–9790CrossRefGoogle Scholar
  67. 67.
    Zhongquan W, Chunyang J, Yan Wanga W, Xiaojun Y (2015) RSC Adv 5:50813–50820CrossRefGoogle Scholar
  68. 68.
    Lanke K, Sekar N (2015) J Fluoresc 25:1469–1480CrossRefGoogle Scholar
  69. 69.
    Senthilkumar P, Nithya C, Anbarasan PM (2014) Spectrochi Acta A Mol Biomol Spectrosc 122:15–21CrossRefGoogle Scholar
  70. 70.
    Senthilkumar P, Nithya C, Anbarasan PM (2013) J Mol Model 19(10):4561–4573CrossRefGoogle Scholar
  71. 71.
    Senthilkumar P, Nithya C, Anbarasan PM (2014) Spectrochim Acta A Mol Biomol Spectrosc 117:181–185CrossRefGoogle Scholar
  72. 72.
    Prakasam M, Anbarasan PM (2016) RSC Adv 6(79):75242–75250CrossRefGoogle Scholar
  73. 73.
    Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antony Paulraj Bella
    • 1
  • Rajadurai Vijay Solomon
    • 2
  • Swaminathan Angeline Vedha
    • 1
  • Johnson Princy Merlin
    • 1
    Email author
  1. 1.PG and Research Department of ChemistryBishop Heber College (Autonomous)TiruchirappalliIndia
  2. 2.Department of ChemistryMadras Christian College (Autonomous)ChennaiIndia

Personalised recommendations