B-doped C3N monolayer: a robust catalyst for oxidation of carbon monoxide

  • Mehdi D. EsrafiliEmail author
  • Safa Heydari
Regular Article


The catalytic oxidation of carbon monoxide (CO) on B-doped C3N nanosheet is investigated by first-principle density functional theory calculations. According to our results, the incorporation of a B atom can induce a noticeable charge redistribution into C3N monolayer, which results in the enhancement of O2 adsorption. The activation energy for the rate-determining step of CO + O2 reaction via the Langmuir–Hinshelwood (LH) mechanism is calculated to be 0.32 eV, which is 0.24 eV smaller than that of the Eley–Rideal (ER) mechanism. This can be mainly related to the more favorable CO-5σ → O2-2π* orbital interaction in the former mechanism, which facilitates the formation of OCOO intermediate over B-doped C3N. The results of this study provide a theoretical evidence for the potential of B-doped C3N as a novel and metal-free catalyst in the CO oxidation reaction.


C3N nanosheet CO oxidation Graphene DFT Doping 


Supplementary material

214_2019_2444_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2210 kb)


  1. 1.
    Gao Y, Shao N, Bulusu S, Zeng X (2008) Effective CO oxidation on endohedral gold-cage nanoclusters. J Phys Chem C 112:8234–8238CrossRefGoogle Scholar
  2. 2.
    Li Y, Yu Y, Wang J-G, Song J, Li Q, Dong M, Liu C-J (2012) CO oxidation over graphene supported palladium catalyst. Appl Catal B: Environ 125:189–196CrossRefGoogle Scholar
  3. 3.
    Lee D-S, Chen Y-W (2013) Synthesis of catalysts and its application for low-temperature CO oxidation. J Catal 2013:1–9CrossRefGoogle Scholar
  4. 4.
    Liu X, Sui Y, Duan T, Meng C, Han Y (2014) CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation. Phys Chem Chem Phys 16:23584–23593CrossRefPubMedGoogle Scholar
  5. 5.
    Sinthika S, Kumar EM, Thapa R (2014) Doped h-BN monolayer as efficient noble metal-free catalysts for CO oxidation: the role of dopant and water in activity and catalytic de-poisoning. J Mater Chem A 2:12812–12820CrossRefGoogle Scholar
  6. 6.
    Wu P, Du P, Zhang H, Cai C (2014) Graphdiyne as a metal-free catalyst for low-temperature CO oxidation. Phys Chem Chem Phys 16:5640–5648CrossRefPubMedGoogle Scholar
  7. 7.
    Jia C, Zhang G, Zhong W, Jiang J (2016) A first-principle study of synergized O2 activation and CO oxidation by Ag nanoparticles on TiO2 (101) support. ACS Appl Mater Interfaces 8:10315–10323CrossRefPubMedGoogle Scholar
  8. 8.
    Xu X-Y, Li J, Xu H, Xu X, Zhao C (2016) DFT investigation of Ni-doped graphene: catalytic ability to CO oxidation. New J Chem 40:9361–9369CrossRefGoogle Scholar
  9. 9.
    Molina L, Hammer B (2003) Active role of oxide support during CO oxidation at Au/MgO. Phys Rev Lett 90:206102CrossRefPubMedGoogle Scholar
  10. 10.
    Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) Catalytic CO oxidation by free Au2−: experiment and theory. J Am Chem Soc 125:10437–10445CrossRefPubMedGoogle Scholar
  11. 11.
    Chang C, Cheng C, Wei C (2008) CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J Chem Phys 128:124710CrossRefPubMedGoogle Scholar
  12. 12.
    Su H-Y, Yang M-M, Bao X-H, Li W-X (2008) The effect of water on the CO oxidation on Ag (111) and Au (111) surfaces: a first-principle study. J Phys Chem C 112:17303–17310CrossRefGoogle Scholar
  13. 13.
    Zhang C, Hu P (2001) CO oxidation on Pd (100) and Pd (111): a comparative study of reaction pathways and reactivity at low and medium coverages. J Am Chem Soc 123:1166–1172CrossRefPubMedGoogle Scholar
  14. 14.
    Chen M, Cai Y, Yan Z, Gath K, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331CrossRefGoogle Scholar
  15. 15.
    Piccinin S, Stamatakis M (2014) CO oxidation on Pd(111): a first-principles-based kinetic Monte Carlo study. ACS Catal 4:2143–2152CrossRefGoogle Scholar
  16. 16.
    Baidya T, Marimuthu A, Hegde M, Ravishankar N, Madras G (2007) Higher catalytic activity of nano-Ce1-x-yTixPdyO2-δ compared to nano-Ce1-xPdxO2-δ for CO oxidation and N2O and NO reduction by CO: role of oxide ion vacancy. J Phys Chem C 111:830–839CrossRefGoogle Scholar
  17. 17.
    Zhang J, Jin H, Sullivan MB, Lim FCH, Wu P (2009) Study of Pd–Au bimetallic catalysts for CO oxidation reaction by DFT calculations. Phys Chem Chem Phys 11:1441–1446CrossRefPubMedGoogle Scholar
  18. 18.
    Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641CrossRefPubMedGoogle Scholar
  19. 19.
    Lim FCH, Zhang J, Jin H, Sullivan MB, Wu P (2013) A density functional theory study of CO oxidation on Pd–Ni alloy with sandwich structure. Appl Catal A 451:79–85CrossRefGoogle Scholar
  20. 20.
    Guo L, Zhang R, Guo LL, Niu S (2014) CO oxidation on subnanometer AlPtn clusters. Comput Theor Chem 1036:7–15CrossRefGoogle Scholar
  21. 21.
    Tang Y, Dai X, Yang Z, Pan L, Chen W, Ma D, Lu Z (2014) Formation and catalytic activity of Pt supported on oxidized graphene for the CO oxidation reaction. Phys Chem Chem Phys 16:7887–7895CrossRefPubMedGoogle Scholar
  22. 22.
    Tang Y, Yang Z, Dai X, Lu Z, Zhang Y, Fu Z (2014) Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped graphene. J Nanosci Nanotechnol 14:7117–7124CrossRefPubMedGoogle Scholar
  23. 23.
    Liu X, Sui Y, Duan T, Meng C, Han Y (2015) Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: a first-principles investigation. Catal Sci Technol 5:1658–1667CrossRefGoogle Scholar
  24. 24.
    Topsakal M, Aktürk E, Sevinçli H, Ciraci S (2008) First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Phys Rev B 78:235435CrossRefGoogle Scholar
  25. 25.
    Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A (2008) Molecular doping of graphene. Nano Lett 8:173–177CrossRefPubMedGoogle Scholar
  26. 26.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefPubMedGoogle Scholar
  27. 27.
    Ko G, Kim H-Y, Ahn J, Park Y-M, Lee K-Y, Kim J (2010) Graphene-based nitrogen dioxide gas sensors. Curr Appl Phys 10:1002–1004CrossRefGoogle Scholar
  28. 28.
    Tang Y, Dai X, Yang Z, Liu Z, Pan L, Ma D, Lu Z (2014) Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon 71:139–149CrossRefGoogle Scholar
  29. 29.
    Zhang X, Lu Z, Tang Y, Fu Z, Ma D, Yang Z (2014) A density function theory study on the NO reduction on nitrogen doped graphene. Phys Chem Chem Phys 16:20561–20569CrossRefPubMedGoogle Scholar
  30. 30.
    Lin Y, Williams TV, Cao W, Elsayed-Ali HE, Connell JW (2010) Defect functionalization of hexagonal boron nitride nanosheets. J Phys Chem C 114:17434–17439CrossRefGoogle Scholar
  31. 31.
    Lei W, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4:1777CrossRefPubMedGoogle Scholar
  32. 32.
    Li LH, Cervenka J, Watanabe K, Taniguchi T, Chen Y (2014) Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8:1457–1462CrossRefPubMedGoogle Scholar
  33. 33.
    Lin S, Ye X, Johnson RS, Guo H (2013) First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation. J Phys Chem C 117:17319–17326CrossRefGoogle Scholar
  34. 34.
    Lei W, Zhang H, Wu Y, Zhang B, Liu D, Qin S, Liu Z, Liu L, Ma Y, Chen Y (2014) Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6:219–224CrossRefGoogle Scholar
  35. 35.
    Esrafili MD (2018) NO reduction by CO molecule over Si-doped boron nitride nanosheet: a dispersion-corrected DFT study. Chem Phys Lett 695:131–137CrossRefGoogle Scholar
  36. 36.
    Lim D-H, Wilcox J (2012) Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J Phys Chem C 116:3653–3660CrossRefGoogle Scholar
  37. 37.
    Shang L, Bian T, Zhang B, Zhang D, Wu LZ, Tung CH, Yin Y, Zhang T (2014) Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem 126:254–258CrossRefGoogle Scholar
  38. 38.
    Fampiou I, Ramasubramaniam A (2015) Influence of support effects on CO oxidation kinetics on CO-saturated graphene-supported Pt13 nanoclusters. J Phys Chem C 119:8703–8710CrossRefGoogle Scholar
  39. 39.
    Nachimuthu S, Lai P-J, Jiang J-C (2014) Efficient hydrogen storage in boron doped graphene decorated by transition metals—a first-principles study. Carbon 73:132–140CrossRefGoogle Scholar
  40. 40.
    Lv R, Chen G, Li Q, McCreary A, Botello-Méndez A, Morozov S, Liang L, Declerck X, Perea-López N, Cullen DA (2015) Ultrasensitive gas detection of large-area boron-doped graphene. Proc Natl Acad Sci USA 112:14527–14532CrossRefPubMedGoogle Scholar
  41. 41.
    Jiang H, Zhao T, Shi L, Tan P, An L (2016) First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in nonaqueous Li–O2 batteries. J Phys Chem C 120:6612–6618CrossRefGoogle Scholar
  42. 42.
    Ji S, Zhao J-X (2018) Boron-doped graphene as a promising electrocatalyst for NO electrochemical reduction: a computational study. New J Chem 42:16346–16353CrossRefGoogle Scholar
  43. 43.
    Chen Y, Y-j Liu, H-x Wang, J-x Zhao, Q-h Cai, X-z Wang, Y-h Ding (2013) Silicon-doped graphene: an effective and metal-free catalyst for NO reduction to N2O? ACS Appl Mater Interfaces 5:5994–6000CrossRefPubMedGoogle Scholar
  44. 44.
    Esrafili MD, Saeidi N, Nematollahi P (2016) Si-doped graphene: a promising metal-free catalyst for oxidation of SO2. Chem Phys Lett 649:37–43CrossRefGoogle Scholar
  45. 45.
    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRefPubMedGoogle Scholar
  46. 46.
    Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491CrossRefGoogle Scholar
  47. 47.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRefGoogle Scholar
  48. 48.
    Wang X, Sun G, Routh P, Kim D-H, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098CrossRefPubMedGoogle Scholar
  49. 49.
    Chen X, Deng D, Pan X, Hu Y, Bao X (2015) N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem Commun 51:217–220CrossRefGoogle Scholar
  50. 50.
    Esrafili MD, Mohammad-Valipour R, Mousavi-Khoshdel SM, Nematollahi P (2015) A comparative study of CO oxidation on nitrogen-and phosphorus-doped graphene. ChemPhysChem 16:3719–3727CrossRefPubMedGoogle Scholar
  51. 51.
    Junkaew A, Namuangruk S, Maitarad P, Ehara M (2018) Silicon-coordinated nitrogen-doped graphene as a promising metal-free catalyst for N2O reduction by CO: a theoretical study. RSC Adv 8:22322–22330CrossRefGoogle Scholar
  52. 52.
    Choi CH, Chung MW, Kwon HC, Park SH, Woo SI (2013) B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J Mater Chem A 1:3694–3699CrossRefGoogle Scholar
  53. 53.
    Yu L, Pan X, Cao X, Hu P, Bao X (2011) Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal 282:183–190CrossRefGoogle Scholar
  54. 54.
    Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176CrossRefGoogle Scholar
  55. 55.
    Mahmood J, Lee EK, Jung M, Shin D, Choi H-J, Seo J-M, Jung S-M, Kim D, Li F, Lah MS (2016) Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc Natl Acad Sci USA 113:7414–7419CrossRefPubMedGoogle Scholar
  56. 56.
    Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y (2017) C3 N-A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv Mater 29:1605625CrossRefGoogle Scholar
  57. 57.
    Tan X, Tahini HA, Seal P, Smith SC (2016) First-principle framework for total charging energies in electrocatalytic materials and charge-responsive molecular binding at gas–surface interfaces. ACS Appl Mater Interfaces 8:10897–10903CrossRefPubMedGoogle Scholar
  58. 58.
    Makaremi M, Grixti S, Butler KT, Ozin GA, Singh CV (2018) Band Engineering of carbon nitride monolayers by N-type, P-type, and isoelectronic doping for photocatalytic applications. ACS Appl Mater Interfaces 10:11143–11151CrossRefPubMedGoogle Scholar
  59. 59.
    Ma D, Zhang J, Li X, He C, Lu Z, Lu Z, Yang Z, Wang Y (2018) C3N monolayers as promising candidates for NO2 sensors. Sens Actuator B-Chem 266:664–673CrossRefGoogle Scholar
  60. 60.
    He B, Shen J, Ma D, Lu Z, Yang Z (2018) Boron-doped C3N monolayer as a promising metal-free oxygen reduction reaction catalyst: a theoretical insight. J Phys Chem C 122:20312–20322CrossRefGoogle Scholar
  61. 61.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  62. 62.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  63. 63.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefPubMedGoogle Scholar
  64. 64.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473CrossRefPubMedGoogle Scholar
  65. 65.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefPubMedGoogle Scholar
  66. 66.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138CrossRefGoogle Scholar
  67. 67.
    Makaremi M, Mortazavi B, Singh CV (2017) Adsorption of metallic, metalloidic, and nonmetallic adatoms on two-dimensional C3 N. J Phys Chem C 121:18575–18583CrossRefGoogle Scholar
  68. 68.
    Zhou X, Feng W, Guan S, Fu B, Su W, Yao Y (2017) Computational characterization of monolayer C3 N: a two-dimensional nitrogen-graphene crystal. J Mater Res 32:2993–3001CrossRefGoogle Scholar
  69. 69.
    Tang Y, Chen W, Shen Z, Li C, Ma D, Dai X (2018) A computational study of CO oxidation reactions on metal impurities in graphene divacancies. Phys Chem Chem Phys 20:2284–2295CrossRefPubMedGoogle Scholar
  70. 70.
    Tang Y, Shen Z, Ma Y, Chen W, Ma D, Zhao M, Dai X (2018) Divacancy-nitrogen/boron-codoped graphene as a metal-free catalyst for high-efficient CO oxidation. Mater Chem Phys 207:11–22CrossRefGoogle Scholar
  71. 71.
    Lu Z, Lv P, Liang Y, Ma D, Zhang Y, Zhang W, Yang X, Yang Z (2016) CO oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: a DFT-D study. Phys Chem Chem Phys 18:21865–21870CrossRefPubMedGoogle Scholar
  72. 72.
    Lu Z, Lv P, Yang Z, Li S, Ma D, Wu R (2017) A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. Phys Chem Chem Phys 19:16795–16805CrossRefPubMedGoogle Scholar
  73. 73.
    Xu G, Wang R, Yang F, Ma D, Yang Z, Lu Z (2017) CO oxidation on single Pd atom embedded defect-graphene via a new termolecular Eley–Rideal mechanism. Carbon 118:35–42CrossRefGoogle Scholar
  74. 74.
    Mao K, Li L, Zhang W, Pei Y, Zeng XC, Wu X, Yang J (2014) A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation. Sci Rep 4:5441CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lu Y-H, Zhou M, Zhang C, Feng Y-P (2009) Metal-embedded graphene: a possible catalyst with high activity. J Phys Chem C 113:20156–20160CrossRefGoogle Scholar
  76. 76.
    Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C 114:6250–6254CrossRefGoogle Scholar
  77. 77.
    Esrafili MD, Asadollahi S (2018) A single Pd atom stabilized on boron-vacancy of h-BN nanosheet: a promising catalyst for CO oxidation. ChemistrySelect 3:9181–9188CrossRefGoogle Scholar
  78. 78.
    J-x Zhao, Chen Y, H-g Fu (2012) Si-embedded graphene: an efficient and metal-free catalyst for CO oxidation by N2O or O2. Theor Chem Acc 131:1242CrossRefGoogle Scholar
  79. 79.
    Jiang Q, Ao Z, Li S, Wen Z (2014) Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene. RSC Adv 4:20290–20296CrossRefGoogle Scholar
  80. 80.
    Wang M, Wang Z (2017) Single Ni atom incorporated with pyridinic nitrogen graphene as an efficient catalyst for CO oxidation: first-principles investigation. RSC Adv 7:48819–48824CrossRefGoogle Scholar
  81. 81.
    Tang Y, Yang Z, Dai X (2012) A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys Chem Chem Phys 14:16566–16572CrossRefPubMedGoogle Scholar
  82. 82.
    Gong X-Q, Liu Z-P, Raval R, Hu P (2004) A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J Am Chem Soc 126:8–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryFaculty of Basic SciencesMaraghehIran

Personalised recommendations