Advertisement

Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure

  • Salah Daoud
  • Nadir BouarissaEmail author
Regular Article
  • 39 Downloads

Abstract

The present work aims to investigate the elastic constants and their related mechanical parameters, acoustic wave speeds, piezoelectric coefficients and thermal properties of cubic zinc-blende AlN and their pressure dependence up to 5 GPa. The calculations are performed using the pseudopotential plane-wave method within the frame work of the density functional perturbation theory in the local density approximation for the exchange–correlation functional. The accord between our results and the experimental and previous theoretical data reported in the literature is found to be generally reasonably good. It is found that the surface acoustic wave speeds decrease with increasing pressure for both [100] and [110] crystallographic directions, while both elastic stiffness constants and piezoelectric coefficients increase under applied pressure. The variation of the features of interest as a function of pressure shows almost a linear behavior.

Keywords

Elastic properties Piezoelectric properties Thermal properties AlN Pressure 

Notes

References

  1. 1.
    Ponce FA, Bour DP (1997) Nature 386:351CrossRefGoogle Scholar
  2. 2.
    Orton JW, Foxon CT (1998) Rep Prog Phys 61:1CrossRefGoogle Scholar
  3. 3.
    Jain SC, Willander M, Narayan J, van Overstraeten R (2000) J Appl Phys 87:965CrossRefGoogle Scholar
  4. 4.
    Bouarissa N, Kassali K (2001) Phys Stat Sol B 228:663CrossRefGoogle Scholar
  5. 5.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815CrossRefGoogle Scholar
  6. 6.
    Bouarissa N (2002) Phys Stat Sol B 231:391CrossRefGoogle Scholar
  7. 7.
    Bouarissa N (2002) Mater Chem Phys 73:51CrossRefGoogle Scholar
  8. 8.
    Vurgaftman I, Meyer JR (2003) J Appl Phys 94:3675CrossRefGoogle Scholar
  9. 9.
    Edgar JH (ed) (1994) Properties of group-III nitrides. EMIS Data-review Series IEE, LondonGoogle Scholar
  10. 10.
    Saib S, Bouarissa N (2006) J Phys Chem Sol 67:1888CrossRefGoogle Scholar
  11. 11.
    Jonnard P, Capron N, Semond F, Massies J, Martinez-Guerrero E, Mariette H (2004) Eur Phys J B 42:351CrossRefGoogle Scholar
  12. 12.
    Xia H, Xia Q, Ruoff AL (1993) Phys Rev B 47:12925CrossRefGoogle Scholar
  13. 13.
    Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K (1994) Phys Rev B 49:14CrossRefGoogle Scholar
  14. 14.
    Petrov I, Mojab E, Powell RC, Greene JE, Hultman L, Sundgren J-E (1992) Appl Phys Lett 60:2491CrossRefGoogle Scholar
  15. 15.
    Cheng YC, Wu XL, Zhu J, Xu LL, Li SH, Chu PK (2008) J Appl Phys 103:073707CrossRefGoogle Scholar
  16. 16.
    Holzapfel WB (1996) Rep Prog Phys 59:29CrossRefGoogle Scholar
  17. 17.
    Badding JV (1998) Annu Rev Mater Sci 28:631CrossRefGoogle Scholar
  18. 18.
    Bouarissa N (2011) Phys B 406:2583CrossRefGoogle Scholar
  19. 19.
    Van Schilfgaarde M, Sher A, Chen AB (1997) J Cryst Growth 178:8CrossRefGoogle Scholar
  20. 20.
    Saib S, Bouarissa N (2005) Eur Phys J B 47:379CrossRefGoogle Scholar
  21. 21.
    Saib S, Bouarissa N, Rodrίguez-Hernàndez P, Muñoz A (2008) Phys B 403:4059CrossRefGoogle Scholar
  22. 22.
    Verma UP, Bisht PS (2010) Solid State Sci 12:665CrossRefGoogle Scholar
  23. 23.
    Tan X, Xin Z, Liu X, Mu Q (2013) Adv Mat Res 821–822:841Google Scholar
  24. 24.
    The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors. http://www.abinit.org
  25. 25.
    Baroni S, Giannozzi P, Testa A (1987) Phys Rev Lett 58:1861CrossRefGoogle Scholar
  26. 26.
    Saib S, Bouarissa N, Rodrίguez-Hernàndez P, Muñoz A (2008) J Appl Phys 103:013506CrossRefGoogle Scholar
  27. 27.
    Saib S, Bouarissa N, Rodrίguez-Hernàndez P, Muñoz A (2008) J Appl Phys 104:076107CrossRefGoogle Scholar
  28. 28.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  29. 29.
    Fuchs M, Da Silva JLF, Stampfl C, Neugebauer J, Scheffler M (2002) Phys Rev B 65:245212CrossRefGoogle Scholar
  30. 30.
    Kanoun MB, Goumri-Said S, Merad AE, Merad G, Cibert J, Aourag H (2004) Semicond Sci Technol 19:1220CrossRefGoogle Scholar
  31. 31.
    Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703CrossRefGoogle Scholar
  32. 32.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  33. 33.
    Kaurav N, Kuo YK, Joshi G, Choudhary KK, Varshney D (2008) High Press Res 28:651CrossRefGoogle Scholar
  34. 34.
    Bouarissa N (2006) Mater Chem Phys 100:41CrossRefGoogle Scholar
  35. 35.
    Algarni H, Al-Hagan OA, Bouarissa N, Khan MA, Alhuwaymel TF (2017) Infrared Phys Technol 86:176CrossRefGoogle Scholar
  36. 36.
    Rai DP, Ghimire MP, Thapa RK (2014) Semiconductors 48:1411CrossRefGoogle Scholar
  37. 37.
    Zagorac J, Zagorac D, Jovanović D, Luković J, Matović B (2018) J Phys Chem Sol 122:94CrossRefGoogle Scholar
  38. 38.
    Rahaman MZ, Ali ML, Rahman MA (2018) Chin J Phys 56:231CrossRefGoogle Scholar
  39. 39.
    Daoud S, Bioud N, Lebga N (2019) Chin J Phys 57:165CrossRefGoogle Scholar
  40. 40.
    Wang SQ, Ye HQ (2003) Phys Status Solidi B 240:45CrossRefGoogle Scholar
  41. 41.
    Adachi S (1992) Physical properties of III-V semiconductor compounds. Wiley, New York, p 25CrossRefGoogle Scholar
  42. 42.
    Adachi S (2005) Properties of group-IV, III–V and II–VI semiconductors. Wiley, ChichesterCrossRefGoogle Scholar
  43. 43.
    Varshney D, Joshi G, Kaurav N, Singh RK (2009) J Phys Chem Solids 70:451CrossRefGoogle Scholar
  44. 44.
    Karch K, Wagner JM, Bechstedt F (1998) Phys Rev B 57:7043CrossRefGoogle Scholar
  45. 45.
    Linghu Y, Wu X, Wang R, Li W, Liu Q (2017) J Electron Mater 46:1914CrossRefGoogle Scholar
  46. 46.
    Yang J (2009) Special topics in the theory of piezoelectricity. Springer, LLCCrossRefGoogle Scholar
  47. 47.
    Lüthi B (2005) Physical acoustics in the solid state. Springer, BerlinCrossRefGoogle Scholar
  48. 48.
    Bo L, Xiao C, Hualin C, Mohammad MA, Xiangguang T, Luqi T, Yi Y, Tianling R (2016) J Semicond 37:021001CrossRefGoogle Scholar
  49. 49.
    Bouarissa N, Atik Y (2008) Mod Phys Lett B 22:1221CrossRefGoogle Scholar
  50. 50.
    Ypma TJ (1995) SIAM Rev 37:531CrossRefGoogle Scholar
  51. 51.
    Bu G, Ciplys D, Shur M, Schowalter LJ, Schujman S, Gaska R (2006) IEEE Trans Ultrason Ferroelectr Freq Control 53:251CrossRefGoogle Scholar
  52. 52.
    Daoud S, Bioud N, Bouarissa N (2015) Mater Sci Semicond Process 31:124CrossRefGoogle Scholar
  53. 53.
    Daoud S, Bioud N, Lebga N (2013) Pramana. J Phys 81:885Google Scholar
  54. 54.
    Yong JZ, Hong MS, Xing WT, Fei YJ (2010) Mol Phys 108:1641CrossRefGoogle Scholar
  55. 55.
    Zhang W, Cheng Y, Zhu J, Chen XR (2009) Chin Phys B 18:1207CrossRefGoogle Scholar
  56. 56.
    Wang S (2009) Phys Status Solidi B 246:1618CrossRefGoogle Scholar
  57. 57.
    Daoud S, Bouarissa N (2019) Comput Condens Matter 19:e00359CrossRefGoogle Scholar
  58. 58.
    Kumar V, Jha V, Shrivastava AK (2010) Cryst Res Technol 45:920CrossRefGoogle Scholar
  59. 59.
    Yaddanapudi K (2018) AIP Adv 8:125006CrossRefGoogle Scholar
  60. 60.
    MacChesney JB, Bridenbaugh PM, O’Connor PB (1970) Mater Res Bull 5:783CrossRefGoogle Scholar
  61. 61.
    Martienssen W, Main F (2005) Semiconductors. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data. Spinger, Berlin, pp 575–694CrossRefGoogle Scholar
  62. 62.
    Goldberg Y (2001) In: Levinshtein ME, Rumyantsev SL, Shur MS (eds) Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, 31–47Google Scholar
  63. 63.
    Chen H, Lei X, Long J, Huang W (2014) Mater Sci Semicond Process 27:207CrossRefGoogle Scholar
  64. 64.
    Davydov SY, Tikhonov SK (1996) Semiconductors 30:514Google Scholar
  65. 65.
    Shimada K, Sota T, Suzuki K (1998) J Appl Phys 84:4951CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Matériaux et Systèmes Electroniques (LMSE)Université Mohamed Elbachir El Ibrahimi de Bordj Bou ArreridjBordj Bou ArreridjAlgeria
  2. 2.Laboratory of Materials Physics and its ApplicationsUniversity of M’silaM’silaAlgeria

Personalised recommendations