Advertisement

Periodic density functional theory study of the Raman spectrum of the hydrated uranyl oxyhydroxide mineral becquerelite

  • Francisco ColmeneroEmail author
  • Joaquín Cobos
  • Vicente Timón
Regular Article
  • 62 Downloads
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

Raman spectroscopy is one of the main analytic techniques used to identify uranyl-containing minerals. However, the assignment of the Raman spectra of these minerals is usually performed by using empirical arguments leading to unreliable assignments. In this paper, the Raman spectrum of the hydrated uranyl oxyhydroxide mineral becquerelite, \({\text{Ca}}\left( {{\text{UO}}_{2} } \right)_{6} {\text{O}}_{4} \left( {\text{OH}} \right)_{6} \cdot 8{\text{H}}_{2} {\text{O}}\), was studied by means of rigorous theoretical solid-state calculations. The computations were carried out using periodic density functional theory with plane waves and pseudopotentials. The theoretical determination of this Raman spectrum was possible due to the previous development of a high-quality norm-conserving relativistic pseudopotential specific for the uranium atom and the recent optimization of the full crystal structure of this mineral, including the position of all hydrogen atoms in the corresponding unit cell. These two pieces of knowledge were formerly used in order to study the structural, mechanical, and thermodynamic properties of this mineral, but due to the very large size of the unit cell, the determination of the vibrational spectra was not possible. The corresponding results for the Raman spectrum, resulting from an intensive computational work, are reported here. The calculated Raman spectrum was compared with the experimental spectrum, and the results were found to be in very good agreement. Therefore, a normal mode analysis of the theoretical spectra was performed to assign the main bands of the Raman spectrum. This assignment improved significantly the current empirical assignment of the bands of the Raman spectrum of becquerelite mineral.

Keywords

Spent nuclear fuel Becquerelite Density functional theory Raman spectroscopy 

Notes

Acknowledgements

Supercomputer time by the CTI-CSIC center is greatly acknowledged. This work has been carried out in the context of a CSIC–CIEMAT collaboration agreement: “Caracterización experimental y teórica de fases secundarias y óxidos de uranio formados en condiciones de almacenamiento de combustible nuclear.” VT acknowledges the support of the Ministry of Science, Innovation and Universities under project FIS2016-77726-C3-1-CP. 

Supplementary material

214_2019_2437_MOESM1_ESM.docx (5.2 mb)
Supplementary material 1 (DOCX 5338 kb)

References

  1. 1.
    Baker RJ (2014) Uranium minerals and their relevance to long term storage of nuclear fuels. Coord Chem Rev 266–267:123–136CrossRefGoogle Scholar
  2. 2.
    Finch RJ, Ewing RC (1992) The corrosion of uraninite under oxidizing conditions. J Nucl Mater 190:133–156CrossRefGoogle Scholar
  3. 3.
    Wronkiewicz DJ, Bates JK, Gerding TJ, Veleckis E, Tani BS (1992) Uranium release and secondary phase formation during unsaturated testing of UO2 at 90 °C. J Nucl Mater 190:107–127CrossRefGoogle Scholar
  4. 4.
    Wronkiewicz DJ, Bates JK, Wolf SF, Buck EC (1996) Ten-year results from unsaturated drip tests with UO2 at 90°C: implications for the corrosion of spent nuclear fuel. J Nucl Mater 238:78–95CrossRefGoogle Scholar
  5. 5.
    Pearcy EC, Prikryl JD, Murphy WM, Leslie BW (1994) Alteration of uraninite from the Nopal I deposit, Peña Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed US high-level nuclear waste repository at Yucca Mountain, Nevada. Appl Geochem 9:713–732CrossRefGoogle Scholar
  6. 6.
    Plasil J (2014) Oxidation-hydration weathering of uraninite: the current state-of knowledge. J Geosci 59:99–114CrossRefGoogle Scholar
  7. 7.
    Amme M, Renker B, Schmid B, Feth MP, Bertagnolli H, Döbelin W (2002) Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments. J Nucl Mater 306:202–212CrossRefGoogle Scholar
  8. 8.
    Sobry R (1973) Etude des uranate hydrates –II, exame des propietes vibrationelles des urinate hydrates de cations vibalents. J Inorg Nucl Chem 35:2753–2768CrossRefGoogle Scholar
  9. 9.
    Maya L, Begun GM (1981) A Raman spectroscopy study of hydroxo and carbonate species of the uranyl (VI) ion. J Inorg Nucl Chem 43:2827–2832CrossRefGoogle Scholar
  10. 10.
    Biwer BM, Ebert WL, Bates JK (1990) The Raman spectra of several uranyl-containing minerals using a microprobe. J Nucl Mater 175:188–193CrossRefGoogle Scholar
  11. 11.
    Faulkes E, Russo RE, Perry DL (1993) Raman spectral studies of uranyl sulfate and its urea complex structural isomers. Spectrochim Acta A 49:975–983CrossRefGoogle Scholar
  12. 12.
    Faulkes E, Russo RE, Perry DL (1994) Raman studies of uranyl nitrate and its hydroxy bridged dimer. Spectrochim Acta A 50:757–763CrossRefGoogle Scholar
  13. 13.
    Faulkes E, Massuyeau F, Kalashnyk N, Perry DL (2015) Application of Raman and photoluminiscence spectroscopy for identification of uranium minerals in the environment. Spectrosc Eur 27:14–17Google Scholar
  14. 14.
    Manara D, Renker B (2003) Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J Nucl Mater 321:233–237CrossRefGoogle Scholar
  15. 15.
    Bastians S, Crump G, Griffith WP, Withnall R (2004) Raspite and studtite: Raman spectra of two unique minerals. J Raman Spectrosc 35:726–731CrossRefGoogle Scholar
  16. 16.
    Frost RL, Cejka J, Weier ML, Martens W (2006) Molecular structure of the uranyl silicates—A Raman spectroscopic study. J Raman Spectrosc 37:538–551CrossRefGoogle Scholar
  17. 17.
    Frost RL, Weier ML, Martens W, Kloprogge T, Cejka J (2006) A Raman and infrared spectroscopic study of the uranyl silicates—weeksite, soddyite and haiweeite. Spectrochim Acta 63:305–312CrossRefGoogle Scholar
  18. 18.
    Frost RL, Cejka J, Weier ML (2007) Raman spectroscopic study of the uranyl oxyhydroxide hydrates: becquerelite, billietite, curite, schoepite and vandendriesscheite. J Raman Spectrosc 38:460–466CrossRefGoogle Scholar
  19. 19.
    Frost RL, Cejka J (2009) A Raman spectroscopic study of the uranyl mineral rutherfordine—revisited. J Raman Spectrosc 40:1096–1103CrossRefGoogle Scholar
  20. 20.
    He H, Shoesmith DW (2010) Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO2+x. Phys Chem Chem Phys 12:8108–8117CrossRefGoogle Scholar
  21. 21.
    Desgranges L, Baldinozzi G, Simon P, Guimbretière G, Canizares A (2012) Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J Raman Spectrosc 43:455–458CrossRefGoogle Scholar
  22. 22.
    Guimbretière G, Desgranges L, Jegou C, Canizares A, Simon P, Caraballo R, Raimboux N, Barthe MF, Ammar MR, Maslova OA, Duval F, Omnée R (2014) Characterization of nuclear materials in extreme conditions: Raman spectroscopy approach. IEEE Trans Nucl Sci 61:2045–2051CrossRefGoogle Scholar
  23. 23.
    Driscoll RJP, Wolverson D, Mitchels JM, Skelton JM, Parker SC, Molinari M, Khan I, Geeson D, Allen GC (2014) A Raman spectroscopic study of uranyl minerals from cornwall, UK. RSC Adv 4:59137–59149CrossRefGoogle Scholar
  24. 24.
    Walshe A, Spain E, Keyes TE, Forster RJ, Baker RJ (2017) Redox processes in solid-state uranyl (oxy) hydroxide minerals. ChemElectroChem 5:958–963CrossRefGoogle Scholar
  25. 25.
    Bonales LJ, Menor-Salván C, Cobos J (2013) Study of the alteration products of a natural uraninite by Raman spectroscopy. J Nucl Mater 462:296–303CrossRefGoogle Scholar
  26. 26.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations. Spectrochim Acta A 174:245–253CrossRefGoogle Scholar
  27. 27.
    Bonales LJ, Colmenero F, Cobos J, Timón V (2016) Spectroscopic Raman characterization of rutherfordine: a combined DFT and experimental study. Phys Chem Chem Phys 18:16575–16584CrossRefGoogle Scholar
  28. 28.
    Colmenero F (2017) Characterization of secondary phases of spent nuclear fuel under final geological disposal conditions: experimental and theoretical studies. Ph. D. Thesis. Universidad Autónoma de Madrid, Madrid.  https://doi.org/10.13140/rg.2.2.10526.43843
  29. 29.
    Colmenero F (2019) Theoretical studies of the structural, mechanic and Raman spectroscopic properties of uranyl containing minerals. In: Essa KS (ed) Minerals. InTechOpen, London. ISBN 978-953-51-6784-6Google Scholar
  30. 30.
    Colmenero F (2019) The application of periodic density functional theory to the study of uranyl containing materials: thermodynamic properties and stability. In: Glossman-Mitnik D (ed) Density functional theory. InTechOpen, London. ISBN 978-953-51-7020-4Google Scholar
  31. 31.
    Colmenero F, Cobos J, Timón V (2018) Periodic DFT study of the structure, Raman spectrum and mechanical properties of schoepite mineral. Inorg Chem 57:4470–4481CrossRefGoogle Scholar
  32. 32.
    Colmenero F, Fernández AM, Cobos J, Timón V (2018) Becquerelite mineral phase: crystal structure and thermodynamic and mechanic stability by using periodic DFT. RSC Adv 8:24599–24616CrossRefGoogle Scholar
  33. 33.
    Colmenero F, Fernández AM, Cobos J, Timón V (2019) Periodic DFT study of the thermodynamic properties and stability of schoepite and metaschoepite mineral phases. ACS Earth Space Chem 3:17–28CrossRefGoogle Scholar
  34. 34.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations. J Solid State Chem 253:249–257CrossRefGoogle Scholar
  35. 35.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2018) Structural, mechanical and Raman spectroscopic characterization of layered uranyl silicate mineral uranophane-α by DFT methods. Clay Miner 53:377–392CrossRefGoogle Scholar
  36. 36.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Thermodynamic and mechanical properties of rutherfordine mineral based on density functional theory. J Phys Chem C 121:5994–6001CrossRefGoogle Scholar
  37. 37.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Density functional theory study of the thermodynamic and Raman vibrational properties of γ-UO3 Polymorph. J Phys Chem C 121:14507–14516CrossRefGoogle Scholar
  38. 38.
    Colmenero F, Fernández AM, Cobos J, Timón V (2018) Thermodynamic properties of uranyl containing materials based on density functional theory. J Phys Chem C 122:5254–5267CrossRefGoogle Scholar
  39. 39.
    Colmenero F, Fernández AM, Cobos J, Timón V (2018) Temperature dependent free energies of reaction of uranyl containing materials based on density functional theory. J Phys Chem C 122:5268–5279CrossRefGoogle Scholar
  40. 40.
    Weck PF, Kim E, Buck EC (2015) On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Adv 5:79090–79097CrossRefGoogle Scholar
  41. 41.
    Weck PF, Kim E (2016) Uncloaking the thermodynamics of the studtite to metastudtite shear-induced transformation. J Phys Chem C 120:16553–16560CrossRefGoogle Scholar
  42. 42.
    Sassani DC, Jové-Colón CF, Weck PF, Jerden JL, Frey KE, Cruse T, Ebert WL, Buck EC, Wittman RS (2013) Used fuel degradation: experimental and modeling report. fuel cycle research and development report FCRD-UFD-2013-000404. Sandia National Laboratories, AlbuquerqueGoogle Scholar
  43. 43.
    Beridze G, Kowalski PM (2014) Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids. J Phys Chem A 118:11797–11810CrossRefGoogle Scholar
  44. 44.
    Kalashnyk N, Perry DL, Massuyeau F, Faulques E (2018) Exploring optical and vibrational properties of the uranium carbonate andersonite with spectroscopy and first-principles calculations. J Phys Chem C 122:7410–7420CrossRefGoogle Scholar
  45. 45.
    Baroni S, de Gironcoli S, Dal Corso A (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  46. 46.
    Gonze X, Lee C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355–10368CrossRefGoogle Scholar
  47. 47.
    Refson K, Tulip PR, Clark SJ (2006) Variational density-functional perturbation pheory for dielectrics and lattice dynamics. Phys Rev B 73:155114CrossRefGoogle Scholar
  48. 48.
    Burns PC (1999) The crystal chemistry of uranium. Rev Miner Geochem 38:23–90Google Scholar
  49. 49.
    Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. Rev Miner Geochem 38:91–180Google Scholar
  50. 50.
    Payne MC, Teter MP, Ailan DC, Arias A, Joannopoulos JD (1992) Iterative minimization techniques for Ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097CrossRefGoogle Scholar
  51. 51.
    Piret-Meunier J, Piret P (1982) Nouvelle détermination de la structure cristalline de la becqerelite. Bull Soc Fr Miner Cristallogr 105:606–610Google Scholar
  52. 52.
    Pagoaga MK, Appleman DE, Stewart M (1987) Crystal structures and crystal chemistry of the uranyl oxide hydrates becquerelite, billietite, and protasite. Am Miner 72:1230–1238Google Scholar
  53. 53.
    Cejka J, Sejkora J, Skala R, Cejka J, Novotna M, Ederova J (1998) Contribution to the crystal chemistry of synthetic becquerelite, billietite and protasite. N Jahrb Miner Abh 174:159–180Google Scholar
  54. 54.
    Burns PC, Li Y (2002) The structures of becquerelite and Sr-exchanged becquerelite. Am Mineral 87:550–557CrossRefGoogle Scholar
  55. 55.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570Google Scholar
  56. 56.
  57. 57.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  58. 58.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  59. 59.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  60. 60.
    Pfrommer BG, Cote M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131:233–240CrossRefGoogle Scholar
  61. 61.
    Monkhorst HJ, Pack JD (1976) Special points for Brillonin-zone integration. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  62. 62.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Estructura de la Materia (IEM-CSIC)MadridSpain
  2. 2.Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)MadridSpain

Personalised recommendations