Advertisement

Chemical bonding in the hexamethylbenzene–SO2+ dication

  • Lisa Pecher
  • Sudip Pan
  • Gernot FrenkingEmail author
Regular Article
  • 60 Downloads
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

A thorough bonding analysis is performed on the dication [C6(CH3)6SO]2+. The results show that the molecule is best described in terms of covalent interactions between the cations C6(CH3) 6 + and SO+, whereby the bonding consists of two dominating contributions. The strongest bonding comes from dative interaction from the HOMO of C6(CH3) 6 + to the LUMO of SO+, which has overall σ symmetry. The second significant component is due to electron-sharing bonding between the singly occupied orbitals of the two fragments. The bonding situation may be sketched with the formula \([{\text{C}_{6}}\text{(CH)}_{6}\overrightarrow{-}{\text{SO}}]^{2+}\). The bare dication is thermodynamically unstable with regard to dissociation into two cations. It is kinetically stable due to the activation barrier, and it is further stabilized by counterions.

Keywords

Bonding analysis Density functional theory Oxidation state Small-molecule activation Sulfur chemistry 

Notes

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft.

Supplementary material

214_2019_2434_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 70 kb)

References

  1. 1.
    Schenk WA (1987) Sulfur oxides as ligands in coordination compounds. Angew Chem Int Ed 26:98–109CrossRefGoogle Scholar
  2. 2.
    Bisseret P, Blanchard N (2013) Taming sulfur dioxide: a breakthrough for its wide utilization in chemistry and biology. Org Biomol Chem 11:5393–5398CrossRefGoogle Scholar
  3. 3.
    Deeming AS, Emmett EJ, Richards-Taylor CS, Willis MC (2014) Rediscovering the chemistry of sulfur dioxide: new developments in synthesis and catalysis. Synthesis 46:2701–2710CrossRefGoogle Scholar
  4. 4.
    Lugiņina J (2014) Sulfur dioxide in the past decade. Synlett 25:2962–2963CrossRefGoogle Scholar
  5. 5.
    Chao P, Lemal DM (1973) Sulfur monoxide chemistry. Stereochemistry of the thiirane oxide-diene reaction. J Am Chem Soc 95:920–922CrossRefGoogle Scholar
  6. 6.
    Schenk WA, Leissner J, Buschka C (1984) Stabilization of sulfur monoxide by coordination to transition metals. Angew Chem Int Ed 23:806–807CrossRefGoogle Scholar
  7. 7.
    Longobardi LE, Wolter V, Stephan DW (2015) Frustrated Lewis pair activation of an N-sulfinylamine: a source of sulfur monoxide. Angew Chem Int Ed 54:809–812CrossRefGoogle Scholar
  8. 8.
    Bestgen S, Roesky PW (2018) SO2+: closing a gap in sulfur oxide chemistry. Angew Chem Int Ed 57:1148–1150CrossRefGoogle Scholar
  9. 9.
    Malischewski M, Seppelt K (2017) Isolation and characterization of a non-rigid hexamethylbenzene–SO2+ complex. Angew Chem Int Ed 56:16495–16497CrossRefGoogle Scholar
  10. 10.
    Ruedenberg K (1962) The physical nature of the chemical bond. Rev Mod Phys 34:326–376CrossRefGoogle Scholar
  11. 11.
    Hurley AC (1962) Potential energy curves for doubly positive diatomic ions: part II. Predicted states and transitions of N2 2+, O2 2+, and NO2 2+. J Mol Spectrosc 9:18–29CrossRefGoogle Scholar
  12. 12.
    Edwards AK, Wood RM (1982) Dissociation of N2 2+ ions into N+ fragments. J Chem Phys 76:2938–2942CrossRefGoogle Scholar
  13. 13.
    Wetmore RW, Boyd RK (1986) Theoretical investigation of the dication of molecular nitrogen. J Phys Chem 90:5540–5551CrossRefGoogle Scholar
  14. 14.
    Basch H, Hoz S, Goldberg M, Gamss L (1991) Electronic structure and properties of the O2 2+, SO2+ and S2 2+ diatomic dications. Isr J Chem 31:335–343CrossRefGoogle Scholar
  15. 15.
    Nenajdenko VG, Shevchenko NE, Balenkova ES, Alabugin IV (2003) 1, 2-Dications in organic main group systems. Chem Rev 103:229–282CrossRefGoogle Scholar
  16. 16.
    Fournier J, Fournier PG, Langford ML, Mousselmal M, Robbe JM, Gandara G (1992) An experimental and theoretical study of the doubly charged ion O2 2+. J Chem Phys 96:3594–3602CrossRefGoogle Scholar
  17. 17.
    Guilhaus M, Brenton AG, Beynon JH, Rabenovic M, PvR Schleyer (1984) First observation of He2 2+: charge stripping of He2 + using a double-focusing mass spectrometer. J Phys B 17:L605–L610CrossRefGoogle Scholar
  18. 18.
    Frenking G, Tonner R, Klein S, Takagi N, Shimizu N, Krapp A, Pandey KK, Parameswaran P (2014) New bonding modes of carbon and heavier group 14 atoms Si–Pb. Chem Soc Rev 43:5106–5139CrossRefGoogle Scholar
  19. 19.
    Frenking G, Hermann M, Andrada DM, Holzmann N (2016) Donor–acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C–Sn. Chem Soc Rev 45:1129–1144CrossRefGoogle Scholar
  20. 20.
    Zhao L, Hermann M, Holzmann N, Frenking G (2017) Dative bonding in main group compounds. Coord Chem Rev 344:163–204CrossRefGoogle Scholar
  21. 21.
    Lewis GN (1938) Acids and bases. J Frankl Inst 226:293–313CrossRefGoogle Scholar
  22. 22.
    Sidgwick NV (1931) Structure of divalent carbon compounds. Chem Rev 9:77–88CrossRefGoogle Scholar
  23. 23.
    Michalak A, Mitoraj M, Ziegler T (2008) Bond orbitals from chemical valence theory. J Phys Chem A 112:1933–1939CrossRefGoogle Scholar
  24. 24.
    Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975CrossRefGoogle Scholar
  25. 25.
    Zhao L, von Hopffgarten M, Andrada DM, Frenking G (2018) Energy decomposition analysis. WIREs Comput Mol Sci 8:e1345CrossRefGoogle Scholar
  26. 26.
    Frenking G, Bickelhaupt FM (2014) The EDA perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding, Wiley, Weinheim, pp 121–158CrossRefGoogle Scholar
  27. 27.
    Scharf LT, Andrada DM, Frenking G, Gessner VH (2017) The bonding situation in metalated ylides. Chem Eur J 23:4422–4434CrossRefGoogle Scholar
  28. 28.
    Hermann M, Frenking G (2017) Carbones as ligands in novel main-group compounds E[C(NHC)2]2 (E = Be, B+, C2+, N3+, Mg, Al+, Si2+, P3+): a theoretical study. Chem Eur J 23:3347–3356CrossRefGoogle Scholar
  29. 29.
    Georgiou DC, Zhao L, Wilson DJD, Frenking G, Dutton JL (2017) NHC-stabilised acetylene: How far can the analogy be pushed? Chem Eur J 23:2926–2934CrossRefGoogle Scholar
  30. 30.
    Andrada DM, Casalz-Sainz JL, Pendas AM, Frenking G (2018) Dative and electron-sharing bonding in C2F4. Chem Eur J 24:9083–9089CrossRefGoogle Scholar
  31. 31.
    Yang T, Andrada DM, Frenking G (2018) Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study. Phys Chem Chem Phys 20:11856–11866CrossRefGoogle Scholar
  32. 32.
    Jerabek P, Schwerdtfeger P, Frenking G (2019) Dative and electron-sharing bonding in transition metal compounds. J Comput Chem 40:247–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations