Theoretical investigations on mechanisms and kinetics of OH + (CH3)2NNH2 reaction in the atmosphere

  • Yizhen TangEmail author
  • Chenggang Lu
  • Zile Han
  • Fan Zhai
  • Zhihao Fu
Regular Article


Using BMC-CCSD//B3LYP/6-311G(d,p) levels of theory, the mechanisms and kinetics of the OH + (CH3)2NNH2 reaction in atmosphere were investigated theoretically. The result indicates that both H-abstraction and substitution mechanisms are located, and the former one is dominant. Moreover, the product of (CH3)2NNH + H2O is more favorable than CH3N(CH2)NH2 + H2O in the H-abstraction mechanism. The calculated total rate constant shows negative temperature dependence below 500 K. It is in accordance with experimental study that slightly negative temperature dependence was found between 254 and 633 K. Moreover, the calculated rate constant shows significance variational effect from 200 to 3000 K, and methyl substitution effect plays an important role in the OH + (CH3)nNH2−nNH2 (n = 0,1 and 2) reactions.


(CH3)2NNH2 Hydrogen abstraction OH radicals Rate constants 



This work has been supported by the National Natural Science Foundation of China (No. 41775119), and Focus on Research and Development Plan in Shandong Province (2018GSF117017). We would like to thank Professor Donald G. Thuhlar for providing the POLYRATE 2010-A program.


  1. 1.
    Sutton GP (1992) Rocket propulsion elements. Wiley, New YorkGoogle Scholar
  2. 2.
    Syage JA, Cohen RB, Steadman J (1992) J. Chem. Phys. 97:6072–6084CrossRefGoogle Scholar
  3. 3.
    Viereck RA, Berstein LS, Mende SB, Murad E, Swenson GR, Pike CP (1993) J. Spacecr. Rokcets 30:724–730CrossRefGoogle Scholar
  4. 4.
    Vaghjiani GL (2001) J. Phys. Chem. A. 105:4682–4690CrossRefGoogle Scholar
  5. 5.
    Golden DM, Solly RK, Gac NA, Benson SW (1972) Int. J. Chem. Kinet. 4:433–448CrossRefGoogle Scholar
  6. 6.
    Kerr JA, Sekhar RC, Trotman-Dickenson AF (1963) J. Chem. Soc. B 3217–3225Google Scholar
  7. 7.
    Cordes HF (1961) J. Phys. Chem. 65:1473–1477CrossRefGoogle Scholar
  8. 8.
    Gray P, Spencer M (1962) Combust. Flame 6:337–345CrossRefGoogle Scholar
  9. 9.
    Eberstein IJ, Glassman I (1965) Symp. Int. Combust. Proc. 10:365–374CrossRefGoogle Scholar
  10. 10.
    Lang VI (1992) J. Phys. Chem. 96:3047–3050CrossRefGoogle Scholar
  11. 11.
    Vaghjiani GL (1997) J. Phys. Chem. A 101:4167–4171CrossRefGoogle Scholar
  12. 12.
    Tuazon EC, Carter WPL, Brown RV, Winer AM, Pitts JN Jr (1983) J. Phys. Chem. 87:1600–1605CrossRefGoogle Scholar
  13. 13.
    Tuazon EC, Carter WPL, Brown RV, Winer AM, Pitts JN Jr (1981) Environ. Sci. Technol. 15:823–828CrossRefGoogle Scholar
  14. 14.
    Gray P, Herod AA, Jones A, Thynne JCJ (1966) Trans. Faraday Soc. 62:2774–2784CrossRefGoogle Scholar
  15. 15.
    Gray P, Thynne JCJ (1965) Symp. Int. Combust. Proc. 10:433–435CrossRefGoogle Scholar
  16. 16.
    Vaghjiani GL (2001) J. Chem. Kinet. 33:358–362CrossRefGoogle Scholar
  17. 17.
    Tang YZ, Sun JY, Jia XJ, Sun H, Pan XM, Wang RS (2010) J. Comput. Chem. 31:1520–1527CrossRefGoogle Scholar
  18. 18.
    Liu HX, Wang Y, Yang L, Liu JY, Gao H, Li ZS, Sun CC (2009) J. Comput. Chem. 30:2194–2204CrossRefGoogle Scholar
  19. 19.
    Sun HY, Zhang P, Law CK (2012) Phys. Chem. A 116(21):5045–5056CrossRefGoogle Scholar
  20. 20.
    Wang L, Wang N, He HQ, Zhang JL (2014) Mole. Phys. 112(11):1600–1607CrossRefGoogle Scholar
  21. 21.
    Valadbeigi Y, Farrokhpour H (2015) Mole. Phys. 113(6):577–583CrossRefGoogle Scholar
  22. 22.
    Ding N, Luo Q, Li QS (2011) J. Phys. Chem. A 115(5):805–814CrossRefGoogle Scholar
  23. 23.
    Lynch BJ, Zhao Y, Truhlar DG (2005) J. Phys. Chem. A 109:1643–1649CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PWM, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Pople JA (2010) Gaussian 09. Gaussian Inc, Wallingford, CTGoogle Scholar
  25. 25.
    Chuang YY, Corchado JC, Fast PL, Villa J, Hu WP, Liu YP, Lynch GC, Jackels CF, Nguyen K, Gu MZ, Rossi I, Coitino E, Clayton S, Melissas V, Lynch BJ, Steckler R, Garret BC, Isaacson AD, Truhlar DG (2011) Polyrate 2010-A. University of Minnesota, Minneapolis, MNGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental and Municipal EngineeringQingdao University of TechnologyQingdaoPeople’s Republic of China
  2. 2.Shandong Academy for Environmental PlanningJinanPeople’s Republic of China
  3. 3.Goodlink Environmental Protection International Cooperation CenterJinanPeople’s Republic of China

Personalised recommendations