Combining polarizable embedding with the Frenkel exciton model: applications to absorption spectra with overlapping solute–solvent bands

  • Julie Stendevad
  • Jacob Kongsted
  • Casper SteinmannEmail author
Regular Article


Modeling of spectral properties of extended chemical systems, such as the case of a solute in a solvent, is often performed based on so-called hybrid models in which only part of the complete system is given a quantum chemical description. The remaining part of the system is represented by an embedding potential treating the environment either by a discrete or continuum model. In order to successfully make use of minimally sized quantum chemical regions, the embedding potential should represent the environment as authentic as possible. Here, the importance of exactly such an accurate description of the embedding potential is investigated by comparing the performance of the polarizable embedding scheme against larger-sized full quantum mechanical calculations. Our main conclusion is that as long as the solute and solvent do not overlap in their absorption spectra, the polarizable embedding approach shows results consistent with full quantum chemical calculations. For partly overlapping absorption spectra, the polarizable embedding approach can furthermore successfully be expanded within a Frenkel exciton approach based on only economical monomeric quantum chemical calculations. Thus, by extending the polarizable embedding scheme to the exciton picture, it is possible to cover computations of the whole absorption spectrum and still reduce the computational cost compared to costly cluster calculations.


Polarizable embedding Exciton coupling Frenkel Hamiltonian Absorption properties 



The authors would like to thank Joel Milanese for providing the structures of the water systems used in this work.

Supplementary material

214_2019_2430_MOESM1_ESM.pdf (68 kb)
Supplementary material 1 (pdf 67 KB)


  1. 1.
    Bowler D, Miyazaki T (2012) Rep Prog Phys 75:036503CrossRefGoogle Scholar
  2. 2.
    Isborn CM, Luehr N, Ufimtsev IS, Martínez TJ (2011) J Chem Theory Comput 7:1814–1823CrossRefGoogle Scholar
  3. 3.
    Jakobsen S, Kristensen K, Jensen F (2013) J Chem Theory Comput 9:3978–3985CrossRefGoogle Scholar
  4. 4.
    Isborn CM, Mar BD, Curchod BFE, Tavernelli I, Martínez TJ (2013) J Phys Chem B 117:12189–12201CrossRefGoogle Scholar
  5. 5.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefGoogle Scholar
  6. 6.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733CrossRefGoogle Scholar
  7. 7.
    Lin H, Truhlar DG (2007) Theor Chem Acc 117:185CrossRefGoogle Scholar
  8. 8.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  9. 9.
    Olsen JM, Aidas K, Kongsted J (2010) J Chem Theory Comput 6:3721–3734CrossRefGoogle Scholar
  10. 10.
    List NH, Olsen JMH, Kongsted J (2016) Phys Chem Chem Phys 18:20234–20250CrossRefGoogle Scholar
  11. 11.
    Nørby MS, Vahtras O, Norman P, Kongsted J (2016) Mol Phys 115:39–47CrossRefGoogle Scholar
  12. 12.
    Nåbo LJ, Olsen JMH, Martínez TJ, Kongsted J (2017) J Chem Theory Comput 13:6230–6236CrossRefGoogle Scholar
  13. 13.
    Schwabe T, Olsen JMH, Sneskov K, Kongsted J, Christiansen O (2011) J Chem Theory Comput 7:2209–2217CrossRefGoogle Scholar
  14. 14.
    Beerepoot MT, Steindal AH, Kongsted J, Brandsdal BO, Frediani L, Ruud K, Olsen JMH (2013) Phys Chem Chem Phys 15:4735–4743CrossRefGoogle Scholar
  15. 15.
    Nørby MS, Steinmann C, Olsen JMH, Li H, Kongsted J (2016) J Chem Theory Comput 12:5050–5057CrossRefGoogle Scholar
  16. 16.
    Frenkel J (1931) Phys Rev 37:17–44CrossRefGoogle Scholar
  17. 17.
    Steinmann C, Kongsted J (2015) J Chem Theory Comput 11:4283–4293CrossRefGoogle Scholar
  18. 18.
    Steinmann C, Reinholdt P, Nørby MS, Kongsted J, Olsen JMH (2018) Int J Quantum Chem 119:e25717CrossRefGoogle Scholar
  19. 19.
    Olsen JMH, Kongsted J (2011) Advances in quantum chemistry, vol 61. Elsevier, New York, pp 107–143Google Scholar
  20. 20.
    Curutchet C, noz Losa AM, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) J Chem Theory Comput 5:1838–1848CrossRefGoogle Scholar
  21. 21.
    Madjet ME, Abdurahman A, Renger T (2006) J Phys Chem B 110:17268–17281CrossRefGoogle Scholar
  22. 22.
    Milanese JM, Provorse MR, Alameda E, Isborn CM (2017) J Chem Theory Comput 13:2159–2171CrossRefGoogle Scholar
  23. 23.
    Jorgensen WL (1981) J Am Chem Soc 103:335–340CrossRefGoogle Scholar
  24. 24.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  25. 25.
    Case DA et al (2014) Amber 14. University of California, San FranciscoGoogle Scholar
  26. 26.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  27. 27.
    Cieplak P, Caldwell J, Kollman P (2001) J Comput Chem 22:1048–1057CrossRefGoogle Scholar
  28. 28.
    Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23:327–341CrossRefGoogle Scholar
  29. 29.
    Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: ACM/IEEE SC 2006 Conference (SC06)Google Scholar
  30. 30.
    Schrödinger Release 2018-4, Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2018. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY. 2018Google Scholar
  31. 31.
    Harder E et al (2015) J. Chem. Theory Comput. 12:281–296CrossRefGoogle Scholar
  32. 32.
    Yanai T, Tew DP, Handy NC (2004) Chem. Phys. Lett. 393:51–57CrossRefGoogle Scholar
  33. 33.
    Hehre WJ, Ditchfield R, Pople JA (1972) J. Chem. Phys. 56:2257–2261CrossRefGoogle Scholar
  34. 34.
    Hariharan PC, Pople JA (1973) Theor. Chim. Acta 28:213–222CrossRefGoogle Scholar
  35. 35.
    Aidas K et al (2014) WIREs Comput. Mol. Sci. 4:269–284CrossRefGoogle Scholar
  36. 36.
    Dalton, a molecular electronic structure program, Release Dalton2016.3 (2016).
  37. 37.
    Beerepoot MTP, Steindal AH, List NH, Kongsted J, Olsen JMH (2016) J. Chem. Theory Comput. 12:1684–1695CrossRefGoogle Scholar
  38. 38.
    Gagliardi L, Lindh R, Karlström G (2004) J. Chem. Phys. 121:4494CrossRefGoogle Scholar
  39. 39.
    Vahtras O (2014) LoProp for DaltonGoogle Scholar
  40. 40.
    Hopmann KH, Ruud K, Pecul M, Kudelski A, Dračínský M, Bouř P (2011) J. Phys. Chem. B 115:4128–4137CrossRefGoogle Scholar
  41. 41.
    Štěpánek P, Bouř P (2014) Phys. Chem. Chem. Phys. 16:20639–20649CrossRefGoogle Scholar
  42. 42.
    Nørby MS, Olsen JMH, Steinmann C, Kongsted J (2017) J. Chem. Theory Comput. 13:4442–4451CrossRefGoogle Scholar
  43. 43.
    Jones E, Oliphant T, Peterson P Others, SciPy: Open source scientific tools for Python 2001–2018. Accessed 21 December
  44. 44.
    Steinmann C, Bratholm LA, Olsen JMH, Kongsted J (2017) J. Chem. Theory Comput. 13:525–536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark

Personalised recommendations