Toward a microscopic understanding of the catalytic oxidation of methane on metal surfaces using density functional theory: a review

  • Ruirui Wang
  • Junjie ChenEmail author
  • Weilong ZhaoEmail author
  • Xinmin Zhang
  • Jingyu Ran
Regular Article


The mechanism of the catalytic oxidation of methane on metal surfaces is increasingly used in different fields of chemical technology and process development. The practical desire to understand such a reaction mechanism stems from the long-held belief that a microscopic understanding may facilitate the design of more efficient chemical processes and catalysts. Density functional theory has been helpful in this regard and the pathways of the catalytic oxidation reaction have recently been determined, providing a clear indication as to how this reaction is likely to take place on metal surfaces. The state of research into the catalytic oxidation of methane on metal surfaces is critically reviewed, with emphasis on recent advances in the reaction mechanism from the quantum chemistry point of view. Special attention is given to the adsorption and activation of methane on a variety of metal surfaces. Mechanistic pathways and kinetics of the oxidation reaction are reviewed, and critical issues in the research on the oxidation mechanism are discussed. Isoelectronic adsorbates tend to go to similar sites to form transition states. The higher the valency of the adsorbate, the greater its tendency to access a transition state close to a high coordination site. Significant changes in reaction pathways could be induced by hydroxyl species. The importance of bimetallic catalysts for the catalytic oxidation reaction should not be underestimated. The current challenges to and opportunities for promoting the understanding of the oxidation mechanism are summarized, in hopes of facilitating progress in this emerging area. Potential topics of oncoming focus are finally highlighted.


Catalytic oxidation Adsorption and activation Density functional theory Methane Oxidation mechanism Quantum chemistry 



This work was supported by the National Natural Science Foundation of China (Nos. 51506048, 51276207, U1504217, and 50876118).


  1. 1.
    Michaelides A, Hu P (2000) Insight into microscopic reaction pathways in heterogeneous catalysis. J Am Chem Soc 12(40):9866–9867CrossRefGoogle Scholar
  2. 2.
    Qi W, Ran J, Wang R, Du X, Shi J, Ran M (2016) Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface: a DFT study with cluster modeling. Comput Mater Sci 111:430–442CrossRefGoogle Scholar
  3. 3.
    Trinchero A, Hellman A, Grönbeck H (2013) Methane oxidation over Pd and Pt studied by DFT and kinetic modeling. Surf Sci 616:206–213CrossRefGoogle Scholar
  4. 4.
    Choudhary TV, Banerjee S, Choudhary VR (2002) Catalysts for combustion of methane and lower alkanes. Appl Catal A 234(1–2):1–23CrossRefGoogle Scholar
  5. 5.
    Gao J, Zheng Y, Jehng J-M, Tang Y, Wachs IE, Podkolzin SG (2015) Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348(6235):686–690PubMedCrossRefGoogle Scholar
  6. 6.
    Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63(2–4):165–174CrossRefGoogle Scholar
  7. 7.
    Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184):616–619PubMedCrossRefGoogle Scholar
  8. 8.
    Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346(1–2):1–27CrossRefGoogle Scholar
  9. 9.
    Kunte A, Raghu AK, Kaisare NS (2018) A spiral microreactor for improved stability and performance for catalytic combustion of propane. Chem Eng Sci 187:87–97CrossRefGoogle Scholar
  10. 10.
    Li Y-H, Hong J-R (2018) Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor. Appl Energy 211:843–853CrossRefGoogle Scholar
  11. 11.
    Eriksson S, Wolf M, Schneider A, Mantzaras J, Raimondi F, Boutonnet M, Järås S (2006) Fuel-rich catalytic combustion of methane in zero emissions power generation processes. Catal Today 117(4):447–453CrossRefGoogle Scholar
  12. 12.
    Basini L (2006) Fuel rich catalytic combustion: principles and technological developments in short contact time (SCT) catalytic processes. Catal Today 117(4):384–393CrossRefGoogle Scholar
  13. 13.
    Schwiedernoch R, Tischer S, Deutschmann O, Warnatz J (2002) Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith. Proc Combust Inst 29(1):1005–1011CrossRefGoogle Scholar
  14. 14.
    Pizza G, Mantzaras J, Frouzakis CE (2010) Flame dynamics in catalytic and non-catalytic mesoscale microreactors. Catal Today 155(1–2):123–130CrossRefGoogle Scholar
  15. 15.
    Mantzaras J (2006) Understanding and modeling of thermofluidic processes in catalytic combustion. Catal Today 117(4):394–406CrossRefGoogle Scholar
  16. 16.
    Reinke M, Mantzaras J, Schaeren R, Bombach R, Inauen A, Schenker S (2004) High-pressure catalytic combustion of methane over platinum: in situ experiments and detailed numerical predictions. Combust Flame 136(1–2):217–240CrossRefGoogle Scholar
  17. 17.
    Yan Y, Tang W, Zhang L, Pan W, Yang Z, Chen Y, Lin J (2014) Numerical simulation of the effect of hydrogen addition fraction on catalytic micro-combustion characteristics of methane-air. Int J Hydrog Energy 39(4):1864–1873CrossRefGoogle Scholar
  18. 18.
    Pizza G, Mantzaras J, Frouzakis CE, Tomboulides AG, Boulouchos K (2009) Suppression of combustion instabilities of premixed hydrogen/air flames in microchannels using heterogeneous reactions. Proc Combust Inst 32(2):3051–3058CrossRefGoogle Scholar
  19. 19.
    Karagiannidis S, Mantzaras J, Jackson G, Boulouchos K (2007) Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors. Proc Combust Inst 31(2):3309–3317CrossRefGoogle Scholar
  20. 20.
    Reinke M, Mantzaras J, Bombach R, Schenker S, Inauen A (2005) Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar. Combust Flame 141(4):448–468CrossRefGoogle Scholar
  21. 21.
    Wiswall JT, Li J, Wooldridge MS, Im HG (2011) Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures. Combust Flame 158(1):139–145CrossRefGoogle Scholar
  22. 22.
    Hsieh W-D, Lu J-H, Chen R-H, Lin T-H (2009) Deposit formation characteristics of gasoline spray in a stagnation-point flame. Combust Flame 156(10):1909–1916CrossRefGoogle Scholar
  23. 23.
    Sui R, Mantzaras J (2016) Combustion stability and hetero-/homogeneous chemistry interactions for fuel-lean hydrogen/air mixtures in platinum-coated microchannels. Combust Flame 173:370–386CrossRefGoogle Scholar
  24. 24.
    Sui R, Mantzaras J, Bombach R (2017) A comparative experimental and numerical investigation of the heterogeneous and homogeneous combustion characteristics of fuel-rich methane mixtures over rhodium and platinum. Proc Combust Inst 36(3):4313–4320CrossRefGoogle Scholar
  25. 25.
    Schultze M, Mantzaras J, Grygier F, Bombach R (2015) Hetero-/homogeneous combustion of syngas mixtures over platinum at fuel-rich stoichiometries and pressures up to 14 bar. Proc Combust Inst 35(2):2223–2231CrossRefGoogle Scholar
  26. 26.
    Wang T, Porosoff MD, Chen JG (2014) Effects of oxide supports on the water-gas shift reaction over PtNi bimetallic catalysts: activity and methanation inhibition. Catal Today 233:61–69CrossRefGoogle Scholar
  27. 27.
    Montebelli A, Visconti CG, Groppi G, Tronconi E, Cristiani C, Ferreira C, Kohler S (2014) Methods for the catalytic activation of metallic structured substrates. Catal Sci Technol 4(9):2846–2870CrossRefGoogle Scholar
  28. 28.
    Domínguez MI, Pérez A, Centeno MA, Odriozola JA (2014) Metallic structured catalysts: influence of the substrate on the catalytic activity. Appl Catal A 478:45–57CrossRefGoogle Scholar
  29. 29.
    Kathiraser Y, Oemar U, Saw ET, Li Z, Kawi S (2015) Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem Eng J 278:62–78CrossRefGoogle Scholar
  30. 30.
    Pan M, Feng Z, Jiang L (2016) Reaction characteristics of methanol steam reforming inside mesh microchannel reactor. Int J Hydrog Energy 41(3):1441–1452CrossRefGoogle Scholar
  31. 31.
    Cao C, Zhang N, Dang D, Cheng Y (2017) Numerical evaluation of a microchannel methane reformer used for miniaturized GTL: operating characteristics and greenhouse gases emission. Fuel Process Technol 167:78–91CrossRefGoogle Scholar
  32. 32.
    Pan M, Wu Q, Jiang L, Zeng D (2015) Effect of microchannel structure on the reaction performance of methanol steam reforming. Appl Energy 154:416–427CrossRefGoogle Scholar
  33. 33.
    García-Diéguez M, Finocchio E, Larrubia MÁ, Alemany LJ, Busca G (2010) Characterization of alumina-supported Pt, Ni and Pt–Ni alloy catalysts for the dry reforming of methane. J Catal 274(1):11–20CrossRefGoogle Scholar
  34. 34.
    Chin Y-H, King DL, Roh H-S, Wang Y, Heald SM (2006) Structure and reactivity investigations on supported bimetallic Au–Ni catalysts used for hydrocarbon steam reforming. J Catal 244(2):153–162CrossRefGoogle Scholar
  35. 35.
    Ahn J, Eastwood C, Sitzki L, Ronney PD (2005) Gas-phase and catalytic combustion in heat-recirculating burners. Proc Combust Inst 30(2):2463–2472CrossRefGoogle Scholar
  36. 36.
    Di Benedetto A, Landi G, Di Sarli V, Barbato PS, Pirone R, Russo G (2012) Methane catalytic combustion under pressure. Catal Today 197(1):206–213CrossRefGoogle Scholar
  37. 37.
    Li Y-H, Chen G-B, Hsu H-W, Chao Y-C (2010) Enhancement of methane combustion in microchannels: effects of catalyst segmentation and cavities. Chem Eng J 160(2):715–722CrossRefGoogle Scholar
  38. 38.
    Persson K, Ersson A, Jansson K, Fierro JLG, Järås SG (2006) Influence of molar ratio on Pd–Pt catalysts for methane combustion. J Catal 243(1):14–24CrossRefGoogle Scholar
  39. 39.
    Persson K, Ersson A, Jansson K, Iverlund N, Järås S (2005) Influence of co-metals on bimetallic palladium catalysts for methane combustion. J Catal 231(1):139–150CrossRefGoogle Scholar
  40. 40.
    Juurlink LBF, Killelea DR, Utz AL (2009) State-resolved probes of methane dissociation dynamics. Prog Surf Sci 84(3–4):69–134CrossRefGoogle Scholar
  41. 41.
    Xu X, Li Y, Qu B, Du L (2012) New insights into the two catalyst cycles of the Pt+-catalyzed oxidation of methane by oxygen: spin-orbit coupling, spin-inversion probabilities, and kinetic information. Comput Theor Chem 989:75–85CrossRefGoogle Scholar
  42. 42.
    Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131(23):8077–8082PubMedCrossRefGoogle Scholar
  43. 43.
    Rioux RM, Marsh AL, Gaughan JS, Somorjai GA (2007) Oxidation and reforming reactions of CH4 on a stepped Pt(557) single crystal. Catal Today 123(1–4):265–275CrossRefGoogle Scholar
  44. 44.
    Persson K, Pfefferle LD, Schwartz W, Ersson A, Järås SG (2007) Stability of palladium-based catalysts during catalytic combustion of methane: the influence of water. Appl Catal B 74(3–4):242–250CrossRefGoogle Scholar
  45. 45.
    Zhang R, Li P, Xiao R, Liu N, Chen B (2016) Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study. Appl Catal B 196:142–154CrossRefGoogle Scholar
  46. 46.
    Debnath T, Ash T, Ghosh A, Sarkar S, Das AK (2018) Exploration of unprecedented catalytic dehydrogenation mechanism of methylamine-water mixture in presence of Ru-pincer complex: a systematic DFT study. J Catal 363:164–182CrossRefGoogle Scholar
  47. 47.
    Petrova NV, Yakovkin IN (2007) Mechanism of associative oxygen desorption from Pt(111) surface. Eur Phys J B 58(3):257–262CrossRefGoogle Scholar
  48. 48.
    Creighan SC, Mukerji RJ, Bolina AS, Lewis DW, Brown WA (2003) The adsorption of CO on the stepped Pt{211} surface: a comparison of theory and experiment. Catal Lett 88(1–2):39–45CrossRefGoogle Scholar
  49. 49.
    Orita H, Inada Y (2005) DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage. J Phys Chem B 109(47):22469–22475PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Psofogiannakis G, St-Amant A, Ternan M (2006) Methane oxidation mechanism on Pt(111): a cluster model DFT study. J Phys Chem B 110(48):24593–24605PubMedCrossRefGoogle Scholar
  51. 51.
    Aghalayam P, Park YK, Fernandes N, Papavassiliou V, Mhadeshwar AB, Vlachos DG (2003) A C1 mechanism for methane oxidation on platinum. J Catal 213(1):23–38CrossRefGoogle Scholar
  52. 52.
    Wang W, Zhu C, Cao Y (2010) DFT study on pathways of steam reforming of ethanol under cold plasma conditions for hydrogen generation. Int J Hydrog Energy 35(5):1951–1956CrossRefGoogle Scholar
  53. 53.
    Wang S-G, Liao X-Y, Hu J, Cao D-B, Li Y-W, Wang J, Jiao H (2007) Kinetic aspect of CO2 reforming of CH4 on Ni(111): a density functional theory calculation. Surf Sci 601(5):1271–1284CrossRefGoogle Scholar
  54. 54.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497PubMedCrossRefGoogle Scholar
  55. 55.
    Dianat A, Seriani N, Ciacchi LC, Bobeth M, Cuniberti G (2014) DFT study of reaction processes of methane combustion on PdO(100). Chem Phys 443:53–60CrossRefGoogle Scholar
  56. 56.
    Liao M-S, Zhang Q-E (1998) Dissociation of methane on different transition metals. J Mol Catal A Chem 136(2):185–194CrossRefGoogle Scholar
  57. 57.
    Niu J, Ran J, Du X, Qi W, Zhang P, Yang L (2017) Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni–Pt bimetallic surfaces: a density functional theory study. Mol Catal 434:206–218CrossRefGoogle Scholar
  58. 58.
    Burch R, Crittle DJ, Hayes MJ (1999) C–H bond activation in hydrocarbon oxidation on heterogeneous catalysts. Catal Today 47(1–4):229–234CrossRefGoogle Scholar
  59. 59.
    Burch R, Urbano FJ, Loader PK (1995) Methane combustion over palladium catalysts: the effect of carbon dioxide and water on activity. Appl Catal A 123(1):173–184CrossRefGoogle Scholar
  60. 60.
    Choudhary VR, Uphade BS, Pataskar SG (2002) Low temperature complete combustion of dilute methane over Mn-doped ZrO2 catalysts: factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst. Appl Catal A 227(1–2):29–41CrossRefGoogle Scholar
  61. 61.
    Luntz AC, Bethune DS (1989) Activation of methane dissociation on a Pt(111) surface. J Chem Phys 90(2):1274–1280CrossRefGoogle Scholar
  62. 62.
    Liu S, Geng Z, Wang Y, Yan Y (2012) Density functional studies of thermal activation of methane by gas-phase [Pt(H)(OH)]+. Comput Theor Chem 980:32–36CrossRefGoogle Scholar
  63. 63.
    Lv L, Wang YC, Wang Q, Liu HW (2010) Why is Pt4+ the least efficient cationic cluster in activating the C–H bond in methane? Two-state reaction computational investigation. J Phys Chem C 114(41):17610–17620CrossRefGoogle Scholar
  64. 64.
    Balcells D, Clot E, Eisenstein O (2010) C–H bond activation in transition metal species from a computational perspective. Chem Rev 110(2):749–823PubMedCrossRefGoogle Scholar
  65. 65.
    Bartczak WM, Stawowska J (2004) Interaction of dihydrogen with transition metal (Pd, Ni, Ag, Cu) clusters. Struct Chem 15(5):447–459CrossRefGoogle Scholar
  66. 66.
    Zhang M, Yang K, Zhang X, Yu Y (2014) Effect of Ni(111) surface alloying by Pt on partial oxidation of methane to syngas: a DFT study. Surf Sci 630:236–243CrossRefGoogle Scholar
  67. 67.
    Zhu H, Lu X, Guo W, Li L, Zhao L, Shan H (2012) Theoretical insight into the desulfurization of thiophene on Pt(110): a density functional investigation. J Mol Catal A Chem 363–364:18–25CrossRefGoogle Scholar
  68. 68.
    Shin K, Kim DH, Yeo SC, Lee HM (2012) Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study. Catal Today 185(1):94–98CrossRefGoogle Scholar
  69. 69.
    Zhao Y, Li S, Sun Y (2013) Theoretical study on the dissociative adsorption of CH4 on Pd-doped Ni surfaces. Chin J Catal 34(5):911–922CrossRefGoogle Scholar
  70. 70.
    Jacob T, Muller RP, Goddard WA (2003) Chemisorption of atomic oxygen on Pt(111) from DFT studies of Pt-clusters. J Phys Chem B 107(35):9465–9476CrossRefGoogle Scholar
  71. 71.
    Kua J, Goddard WA (1998) Chemisorption of organics on platinum. 1. The interstitial electron model. J Phys Chem B 102(47):9481–9491CrossRefGoogle Scholar
  72. 72.
    Cui Q, Musaev DG, Morokuma K (1998) Molecular orbital study of H2 and CH4 activation on small metal clusters. 2. Pd3 and Pt3. J Phys Chem A 102(31):6373–6384CrossRefGoogle Scholar
  73. 73.
    Jacob T, Goddard WA (2005) Chemisorption of (CHx and C2Hy) hydrocarbons on Pt(111) clusters and surfaces from DFT studies. J Phys Chem B 109(1):297–311PubMedCrossRefGoogle Scholar
  74. 74.
    Chempath S, Bell AT (2007) A DFT study of the mechanism and kinetics of methane oxidation to formaldehyde occurring on silica-supported molybdena. J Catal 247(1):119–126CrossRefGoogle Scholar
  75. 75.
    Roy G, Chattopadhyay AP (2017) Dissociation of methane on Ni4 cluster-A DFT study. Comput Theor Chem 1106:7–14CrossRefGoogle Scholar
  76. 76.
    Polynskaya JG, Lebedev AV, Knizhnik AA, Sinitsa AS, Smirnov RV, Potapkin BV (2019) Influence of charge state and active site structure of tetrahedral copper and silver clusters on the methane activation. Comput Theor Chem 1147:51–61CrossRefGoogle Scholar
  77. 77.
    Liu Y-Y, Geng Z-Y, Wang Y-C, Liu J-L, Hou X-F (2013) DFT studies for activation of C-H bond in methane by gas-phase Rhn+ (n= 1–3). Comput Theor Chem 1015:52–63CrossRefGoogle Scholar
  78. 78.
    Sun Q, Li Z, Du A, Chen J, Zhu Z, Smith SC (2012) Theoretical study of two states reactivity of methane activation on iron atom and iron dimer. Fuel 96:291–297CrossRefGoogle Scholar
  79. 79.
    Sun Q, Li Z, Wang M, Du A, Smith SC (2012) Methane activation on Fe4 cluster: a density functional theory study. Chem Phys Lett 550:41–46CrossRefGoogle Scholar
  80. 80.
    Viñes F, Lykhach Y, Staudt T, Lorenz MPA, Papp C, Steinrück H-P, Libuda J, Neyman KM, Görling A (2010) Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chem Eur J 16(22):6530–6539PubMedCrossRefGoogle Scholar
  81. 81.
    Jiang Y, Chu W, Jiang C-F, Wang Y-H (2007) A DFT study of Pdn (n= 1–7) clusters and their interactions with CH4 molecule. Acta Phys Chim Sin 23(11):1723–1727Google Scholar
  82. 82.
    Ciobica IM, van Santen RA (2002) A DFT study of CHx chemisorption and transition states for C-H activation on the Ru(1120) surface. J Phys Chem B 106(24):6200–6205CrossRefGoogle Scholar
  83. 83.
    Ciobîcǎ IM, Frechard F, van Santen RA, Kleyn AW, Hafner J (2000) A DFT study of transition states for C–H activation on the Ru(0001) surface. J Phys Chem B 104(14):3364–3369CrossRefGoogle Scholar
  84. 84.
    Yang M-L, Zhu Y-A, Fan C, Sui Z-J, Chen D, Zhou X-G (2010) Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt(111). J Mol Catal A Chem 321(1–2):42–49CrossRefGoogle Scholar
  85. 85.
    Wang J, Wang G-C (2018) Promotion effect of methane activation on Cu(111) by the surface-active oxygen species: a combination of DFT and ReaxFF study. J Phys Chem C 122(30):17338–17346CrossRefGoogle Scholar
  86. 86.
    Jiang Z, Wu Z, Fang T, Yi C (2019) Enhancement C-H bond activation of methane via doping Pd, Pt, Rh and Ni on Cu(1 1 1) surface: a DFT study. Chem Phys Lett 715:323–329CrossRefGoogle Scholar
  87. 87.
    Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2006) CH4 dissociation on Ni surfaces: density functional theory study. Surf Sci 600(16):3226–3234CrossRefGoogle Scholar
  88. 88.
    Anghel AT, Jenkins SJ, Wales DJ, King DA (2006) Theory of C2Hx species on Pt{110}(1 × 2): structure, stability, and thermal chemistry. J Phys Chem B 110(9):4147–4156PubMedCrossRefGoogle Scholar
  89. 89.
    Li K, Zhou Z, Wang Y, Wu Z (2013) A theoretical study of CH4 dissociation on NiPd(111) surface. Surf Sci 612:63–68CrossRefGoogle Scholar
  90. 90.
    Han D, Nave S, Jackson B (2013) Dissociative chemisorption of methane on Pt(110)-(1 × 2): effects of lattice motion on reactions at step edges. J Phys Chem A 117(36):8651–8659PubMedCrossRefGoogle Scholar
  91. 91.
    Lv C-Q, Ling K-C, Wang G-C (2009) Methane combustion on Pd-based model catalysts: Structure sensitive or insensitive? J Chem Phys 131(14):144704PubMedCrossRefGoogle Scholar
  92. 92.
    Paul J-F, Sautet P (1994) Influence of the surface atom metallic coordination in the adsorption of ethylene on a platinum surface: a theoretical study. J Phys Chem 98(42):10906–10912CrossRefGoogle Scholar
  93. 93.
    Delbecq F, Sautet P (1993) Low-temperature adsorption of formaldehyde on a platinum (111) surface. A theoretical study. Langmuir 9(1):197–207CrossRefGoogle Scholar
  94. 94.
    van Duijneveldt JS, Frenkel D (1992) Computer simulation study of free energy barriers in crystal nucleation. J Chem Phys 96(6):4655–4668CrossRefGoogle Scholar
  95. 95.
    Zhang R, Song L, Wang Y (2012) Insight into the adsorption and dissociation of CH4 on Pt(h k l) surfaces: a theoretical study. Appl Surf Sci 258(18):7154–7160CrossRefGoogle Scholar
  96. 96.
    Wang B, Song L, Zhang R (2012) The dehydrogenation of CH4 on Rh(111), Rh(110) and Rh(100) surfaces: a density functional theory study. Appl Surf Sci 258(8):3714–3722CrossRefGoogle Scholar
  97. 97.
    Li J, Croiset E, Ricardez-Sandoval L (2014) Effect of carbon on the Ni catalyzed methane cracking reaction: a DFT study. Appl Surf Sci 311:435–442CrossRefGoogle Scholar
  98. 98.
    Trimm DL (1983) Catalytic combustion (review). Appl Catal 7(3):249–282CrossRefGoogle Scholar
  99. 99.
    Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catalytic combustion of methane over palladium-based catalysts. Catal Rev Sci Eng 44(4):593–649CrossRefGoogle Scholar
  100. 100.
    Arai H, Yamada T, Eguchi K, Seiyama T (1986) Catalytic combustion of methane over various perovskite-type oxides. Appl Catal 26:265–276CrossRefGoogle Scholar
  101. 101.
    Lee JH, Trimm DL (1995) Catalytic combustion of methane. Fuel Process Technol 42(2–3):339–359CrossRefGoogle Scholar
  102. 102.
    Hu W, Li G, Chen J, Huang F, Gong M, Zhong L, Chen Y (2017) Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions. Fuel 194:368–374CrossRefGoogle Scholar
  103. 103.
    Zou X, Rui Z, Song S, Ji H (2016) Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3. J Catal 338:192–201CrossRefGoogle Scholar
  104. 104.
    García-Diéguez M, Iglesia E (2013) Structure sensitivity via decoration of low-coordination exposed metal atoms: CO oxidation catalysis on Pt clusters. J Catal 301:198–209CrossRefGoogle Scholar
  105. 105.
    Ates A, Pfeifer P, Görke O (2013) Thin-film catalytic coating of a microreactor for preferential CO oxidation over Pt catalysts. Chem Ing Tech 85(5):664–672CrossRefGoogle Scholar
  106. 106.
    Menning CA, Chen JG (2010) Regenerating Pt–3d–Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure. J Power Sources 195(10):3140–3144CrossRefGoogle Scholar
  107. 107.
    DeWitt KM, Valadez L, Abbott HL, Kolasinski KW, Harrison I (2006) Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111). J Phys Chem B 110(13):6705–6713PubMedCrossRefGoogle Scholar
  108. 108.
    Jiang Z, Li L, Xu J, Fang T (2013) Density functional periodic study of the dehydrogenation of methane on Pd(111) surface. Appl Surf Sci 286:115–120CrossRefGoogle Scholar
  109. 109.
    Jia Q, Segre CU, Ramaker D, Caldwell K, Trahan M, Mukerjee S (2013) Structure-property-activity correlations of Pt-bimetallic nanoparticles: a theoretical study. Electrochim Acta 88:604–613CrossRefGoogle Scholar
  110. 110.
    Moussounda PS, Haroun MF, Rakotovelo G, Légaré P (2007) A theoretical study of CH4 dissociation on Pt(100) surface. Surf Sci 601(18):3697–3701CrossRefGoogle Scholar
  111. 111.
    Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112(11):5780–5817PubMedCrossRefGoogle Scholar
  112. 112.
    Yang J, Miao J, Li X, Xu W (2012) Density functional theory studies on the mechanism of activation of methane by homonuclear bimetallic Ni–Ni. Comput Theor Chem 996:117–124CrossRefGoogle Scholar
  113. 113.
    Wang R, Ran J, Qi W, Niu J, Du X (2015) A comparison of methane activation on catalysts Pt2 and PtNi. Comput Theor Chem 1073:94–101CrossRefGoogle Scholar
  114. 114.
    Liu H, Yan R, Zhang R, Wang B, Xie K (2011) A DFT theoretical study of CH4 dissociation on gold-alloyed Ni(111) surface. J Nat Gas Chem 20(6):611–617CrossRefGoogle Scholar
  115. 115.
    Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63(5):201–254CrossRefGoogle Scholar
  116. 116.
    Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG (2011) A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem Eng Sci 66(19):4319–4355CrossRefGoogle Scholar
  117. 117.
    Zhao F, Liu C, Wang P, Huang S, Tian H (2013) First-principles investigations of the structural, electronic, and magnetic properties of Pt13-nNin clusters. J Alloys Compd 577:669–676CrossRefGoogle Scholar
  118. 118.
    Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J Am Chem Soc 126(14):4717–4725PubMedCrossRefGoogle Scholar
  119. 119.
    Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf Sci 606(7–8):679–689CrossRefGoogle Scholar
  120. 120.
    Qi XQ, Wei ZD, Li L, Ji MB, Li LL, Zhang Q, Xia MR, Chen SG, Yang LJ (2012) DFT study on interaction of hydrogen with Pd(111). Comput Theor Chem 979:96–101CrossRefGoogle Scholar
  121. 121.
    Menning CA, Hwu HH, Chen JG (2006) Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment. J Phys Chem B 110(31):15471–15477PubMedCrossRefGoogle Scholar
  122. 122.
    Liu X, Tian D, Meng C (2012) DFT study on stability and structure of bimetallic AumPdn (N= 38, 55, 79, N=m+n, m / n 2:1 and 5:1) clusters. Comput Theor Chem 999:246–250CrossRefGoogle Scholar
  123. 123.
    Zhang J, Jin H, Sullivan MB, Lim FCH, Wu P (2009) Study of Pd–Au bimetallic catalysts for CO oxidation reaction by DFT calculations. Phys Chem Chem Phys 11(9):1441–1446PubMedCrossRefGoogle Scholar
  124. 124.
    Yang Z, Wang J, Yu X (2010) The adsorption, diffusion and dissociation of O2 on Pt-skin Pt3Ni(111): a density functional theory study. Chem Phys Lett 499(1–3):83–88CrossRefGoogle Scholar
  125. 125.
    Lian X, Guo W, Liu F, Yang Y, Xiao P, Zhang Y, Tian WQ (2015) DFT studies on Pt3M (M = Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation. Comput Mater Sci 96(Part A):237–245CrossRefGoogle Scholar
  126. 126.
    Guo W, Tian WQ, Lian X, Liu F, Zhou M, Xiao P, Zhang Y (2014) A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt7 and Pt7-xNix (x= 1, 2, 3) bimetallic clusters: a DFT study. Comput Theor Chem 1032:73–83CrossRefGoogle Scholar
  127. 127.
    Liu H, Wang B, Fan M, Henson N, Zhang Y, Towler BF, Harris HG (2013) Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory. Fuel 113:712–718CrossRefGoogle Scholar
  128. 128.
    Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2009) Reactivity of surface OH in CH4 reforming reactions on Ni(111): a density functional theory calculation. Surf Sci 603(16):2600–2606CrossRefGoogle Scholar
  129. 129.
    Zhu Y-A, Chen D, Zhou X-G, Yuan W-K (2009) DFT studies of dry reforming of methane on Ni catalyst. Catal Today 148(3–4):260–267CrossRefGoogle Scholar
  130. 130.
    Zhu Y-A, Chen D, Zhou X-G, Yuan W-K (2003) Progress in research of the catalysts for high temperature combustion of methane. Prog Chem 15(3):242–248Google Scholar
  131. 131.
    Zi X, Liu L, Xue B, Dai H, He H (2011) The durability of alumina supported Pd catalysts for the combustion of methane in the presence of SO2. Catal Today 175(1):223–230CrossRefGoogle Scholar
  132. 132.
    Deshmukh SR, Vlachos DG (2007) A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals. Combust Flame 149(4):366–383CrossRefGoogle Scholar
  133. 133.
    Oh SH, Mitchell PJ, Siewert RM (1992) Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions. ACS Symp Ser 495:12–25CrossRefGoogle Scholar
  134. 134.
    Niu J, Ran J, Wang R, Du X (2015) Mechanism of methylene oxidation on Pt catalysts: a DFT study. Comput Theor Chem 1067:40–47CrossRefGoogle Scholar
  135. 135.
    Ersson A, Persson K, Adu IK, Järås SG (2006) A comparison between hexaaluminates and perovskites for catalytic combustion applications. Catal Today 112(1–4):157–160CrossRefGoogle Scholar
  136. 136.
    Cimino S, Lisi L, Pirone R, Russo G, Turco M (2000) Methane combustion on perovskites-based structured catalysts. Catal Today 59(1–2):19–31CrossRefGoogle Scholar
  137. 137.
    Jodłowski PJ, Jędrzejczyk RJ, Chlebda D, Gierada M, Łojewska J (2017) In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J Catal 350:1–12CrossRefGoogle Scholar
  138. 138.
    Arya M, Mirzaei AA, Davarpanah AM, Barakati SM, Atashi H, Mohsenzadeh A, Bolton K (2018) DFT studies of hydrocarbon combustion on metal surfaces. J Mol Model 24(2):47PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Energy and Power Engineering, School of Mechanical and Power EngineeringHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  2. 2.Department of Building Environment and Energy Application Engineering, School of Civil EngineeringHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  3. 3.Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of EducationChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations