Theoretical study of hydrogen abstraction by small radicals from cyclohexane-carbonyl-hydroperoxide

  • Yang Tu
  • Jing-Bo WangEmail author
  • Xiang-Yuan Li
Regular Article


Hydrogen abstraction from carbonyl-hydroperoxide is a new reaction class in the low-temperature oxidation of hydrocarbons. In this work, a comprehensive study to the kinetics for the hydrogen abstraction from cyclohexane-carbonyl-hydroperoxide (CCHP) is investigated using the CBS-QB3 composite method. Five small active radicals (H, CH3, O (3P), OH and HO2) are selected as the extracting agents, and the corresponding barrier heights are computed. Guided by the reaction barriers, the preferable path on hydrogen abstraction from CCHP is identified. The two-transition-state model is employed to obtain the overall rate constant when HO2 and OH act as the extracting agents due to the formation of reactant and product complexes. High-pressure-limit rate constants for 25 elementary reactions are reported in the modified Arrhenius form. Branching ratios for the site-specific hydrogen abstraction reactions ranging from 300 to 2500 K are illustrated to show the temperature dependence of preferable path. Compared with the theoretical rate constants obtained in this work, the values estimated by using analogy rules have obvious deviations at low temperature. The obtained hydrogen abstraction reactions are added to the JetSurF2.0 mechanism, thereby improving its kinetic modeling results for cyclohexane oxidation. Present work provides accurate kinetic parameters for this new type of reaction class which can be helpful to improve the predictive capability for hydrocarbon mechanism.


Hydrogen abstraction Cyclohexane-carbonyl-hydroperoxide Low temperature Rate constant 



This work is supported by the National Science Foundation of China (Nos. 91741201, 91641120).

Supplementary material

214_2019_2426_MOESM1_ESM.docx (157 kb)
Supplementary material 1 (DOCX 157 kb)
214_2019_2426_MOESM2_ESM.txt (8 kb)
Supplementary material 2 (TXT 8 kb)


  1. 1.
    Herbinet O, Battin-Leclerc F, Bax S, Gall HL, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F (2011) Phys Chem Chem Phys 13(1):296CrossRefGoogle Scholar
  2. 2.
    Herbinet O, Husson B, Serinyel Z, Cord M, Warth V, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Wang Z, Xie M, Cheng Z, Qi F (2012) Combust Flame 159(12):3455CrossRefGoogle Scholar
  3. 3.
    Ranzi E, Cavallotti C, Cuoci A, Frassoldati A, Pelucchi M, Faravelli T (2015) Combust Flame 162(5):1679CrossRefGoogle Scholar
  4. 4.
    Pelucchi M, Bissoli M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Ranzi E, Stagni A (2014) Energy Fuels 28(11):7178CrossRefGoogle Scholar
  5. 5.
    Zhou CW, Li Y, O’Connor E, Somers KP, Thion S, Keesee C, Mathieu O, Petersen EL, DeVerter TA, Oehlschlaeger MA, Kukkadapu G, Sung C-J, Alrefae M, Khaled F, Farooq A, Dirrenberger P, Glaude PA, Battin-Leclerc F, Santner J, Ju Y, Held T, Haas FM, Dryer FL, Curran HJ (2016) Combust Flame 167:353CrossRefGoogle Scholar
  6. 6.
    Sirjean B, Glaude PA, Ruiz-Lòpez MF, Fournet R (2009) J Phys Chem A 113(25):6924CrossRefGoogle Scholar
  7. 7.
    Burke S, Burke U, Donagh R, Mathieu O, Osorio I, Keesee C, Morones A, Petersen E, Wang W, DeVerter T, Oehlschlaeger M, Rhodes B, Hanson RK, Davidson D, Weber B, Sung C-J, Santner J, Ju Y, Haas F, Curran HJ (2015) Combust Flame 162(2):296CrossRefGoogle Scholar
  8. 8.
    Keromnes A, Metcalfe W, Heufer A, Donohoe N, Das A, Sung C-J, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci M, Petersen E, Pitz W, Curran HJ (2013) Combust Flame 160(6):995CrossRefGoogle Scholar
  9. 9.
    Franklin Goldsmith C, Green W, Klippenstein S (2012) J Phys Chem A 116(13):3325CrossRefGoogle Scholar
  10. 10.
    Xing L, Zhang L, Zhang F, Jiang J (2017) Combust Flame 182:216CrossRefGoogle Scholar
  11. 11.
    Antonov I, Zádor J, Rotavera B, Papajak E, Osborn D, Taatjes C, Sheps L (2016) J Phys Chem A 120(33):6582CrossRefGoogle Scholar
  12. 12.
    Ranzi E, Dente M, Faravelli T, Pennati G (1993) Combust Sci Technol 95:1CrossRefGoogle Scholar
  13. 13.
    Rossi M (2017) Atmos Chem Phys 13(15):7359Google Scholar
  14. 14.
    Silke EJ, Pitz WJ, Westbrook CK, Ribaucour M (2007) J Phys Chem A 111(19):3761CrossRefGoogle Scholar
  15. 15.
    Bakali AE, Braun-Unkhoff M, Dagaut P, Frank P, Cathonnet M (2000) Proc Combust Inst 28(2):1631CrossRefGoogle Scholar
  16. 16.
    Serinyel Z, Herbinet O, Frottier O, Dirrenberger P, Warth V, Glaude PA, Battin-Leclerc F (2013) Combust Flame 160(11):2319CrossRefGoogle Scholar
  17. 17.
    Knepp AM, Meloni G, Jusinski LE, Taatjes CA, Cavallotti C, Klippenstein SJ (2007) Phys Chem Chem Phys 9(31):4315CrossRefGoogle Scholar
  18. 18.
    B Sirjean, E Dames, DA Sheen, FN Egolfopoulos, H.Wang, DF Davidson, RK Hanson, H Pitsch, CT Bowman, CK Law, W Tsang, NP Cernan-sky, DL Miller, A Violi, RP Lindstedt (2010) JetSurF version2.0, Septem-ber19,
  19. 19.
    Montgomery J, Frisch M, Ochterski J, Petersson GA (1999) J Chem Phys 110(6):2822CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Scalmani G, Barone V, Mennucci B, PeterssonGA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF,Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KitaoO, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, OgliaroF, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, GompertsR, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkaso, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision B.01. Gaussian Inc, WallingfordGoogle Scholar
  21. 21.
    Sirjean B, Glaude PA, Ruiz-Lopez M (2006) J Phys Chem A 110(46):12693CrossRefGoogle Scholar
  22. 22.
    Sirjean B, Fournet R (2012) J Phys Chem A 116(25):6675CrossRefGoogle Scholar
  23. 23.
    Altarawneh M, Dlugogorski B, Kennedy E, Mackie J (2013) Combust Flame 160(1):9CrossRefGoogle Scholar
  24. 24.
    Ning H, Gong C, Tan N, Li Z, Li X (2015) Combust Flame 162(11):4167CrossRefGoogle Scholar
  25. 25.
    Gonzalez C, Bernhard Schlegel H (1989) J Chem Phys 90(90):2154CrossRefGoogle Scholar
  26. 26.
    Curtiss LA, Raghavachari K, Redfern P, Pople JA (1997) J Chem Phys 106(3):1063–1079CrossRefGoogle Scholar
  27. 27.
    Mokrushin V, Tsang W (2009) ChemRate v158, National Institue of Standards and Technology: Gaithersburg M 2009, Chemrate 2009Google Scholar
  28. 28.
    Johnston HS, Heicklen J (1962) J Phys Chem 66(3):532CrossRefGoogle Scholar
  29. 29.
    Tardy DC, Rabinovitch BS (1977) Chem Rev 77(3):369CrossRefGoogle Scholar
  30. 30.
    Wang H, Frenklach M (1994) Combust Flame 96(1–2):163CrossRefGoogle Scholar
  31. 31.
    Pechukas P (1981) Annu Rev Phys Chem 32(32):59Google Scholar
  32. 32.
    Tan T, Yang X, Ju Y, Carter A (2016) Phys Chem Chem Phys 18(6):4594CrossRefGoogle Scholar
  33. 33.
    Li SH, Guo JJ, Li R, Wang F, Li XY (2016) J Phys Chem A 120(20):3424CrossRefGoogle Scholar
  34. 34.
    Tan T, Pavone M, Krisiloff D, Carter A (2012) J Phys Chem A 116(33):8431CrossRefGoogle Scholar
  35. 35.
    Jj W, Khaled F, Hong-Bo N, Ma L, Farooq A, Ren W (2017) J Phys Chem A 121(33):6304CrossRefGoogle Scholar
  36. 36.
    Shannon RJ, Taylor S, Goddard A, Blitz M, Heard D (2010) Phys Chem Chem Phys 12(41):13511CrossRefGoogle Scholar
  37. 37.
    Greenwald E, North S, Georgievskii Y, Klippenstein JS (2007) J Phys Chem A 111(25):5582CrossRefGoogle Scholar
  38. 38.
    Klippenstein J (1992) J Chem Phys 96(7):5558CrossRefGoogle Scholar
  39. 39.
    Klippenstein J (1994) J Phys Chem 98(44):11459CrossRefGoogle Scholar
  40. 40.
    Curran HJ, Gaffuri P, Pitz W, Westbrook CK (2002) Combust Flame 129(3):253CrossRefGoogle Scholar
  41. 41.
    CHEMKIN-PRO 15092 Reaction Design: San Diego 2009Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations