Solvent effect on vibrational circular dichroism of chiral amino acids

  • Imrul Shahriar
  • Md Khalid Bin Islam
  • Mushfeqa Iqfath
  • Adhip Rahman
  • Mohammad A. HalimEmail author
Regular Article


This work presents a computational insight into the vibrational circular dichroism (VCD) spectra of methionine, serine and glutamine in gas and solvent (water and methanol) phases with the aid of density functional theory. VCD spectra are simulated using long-range-corrected functional CAM-B3LYP/6-31++G (d, p) level of theory. Molecular dynamics simulations provide the solute–solvent superstructures on which VCD calculation is performed. The combination of both implicit and explicit solvation models is employed to account for the solvent effect. Substantial changes in VCD spectrum are observed in solvent phase mainly due to the formation of zwitterions and non-covalent interaction with the solvent molecules. Vibrational modes of the –COO stretching, –NH3 wagging, scissoring and –CH2 scissoring vibration of methionine, –NH3 wagging, –COO stretching, O–H stretching vibration of serine and –NH2 wagging, –NH2 scissoring, –COO stretching vibration of glutamine produce characteristic VCD signature band in both gas and solvent phases. Molecular dynamics simulation depicts the probability of hydrogen bonding between the C=O groups of the amino acids and added solvent molecules. Solvent polarity shows the immense effect on VCD signals for the different vibrational modes at the interacting rigions of amino acids. In all cases, values of the rotational strength in the solvent phase are higher than that of in the gas phase. This study discloses the profound effect of non-covalent interactions on VCD signatures, and this technique may be applied for probing non-bonding interaction.


Medium effect VCD Vibrational frequency Chiral amino acid Hydrogen bonding 



We are grateful to our donors who supported to build a computational platform in Bangladesh All authors like to acknowledge The World Academy of Science (TWAS) for providing funding (17-479 RG/CHE/AS_I) to purchase High Performance Computer for performing molecular dynamics simulation.

Supplementary material

214_2019_2419_MOESM1_ESM.pdf (603 kb)
Supplementary material 1 (PDF 602 kb)


  1. 1.
    Lu Y, Wang Y, Zhu W, Wang Y (2010) Nonbonding interactions of organic halogens in biological systems : implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12:4543–4551. CrossRefPubMedGoogle Scholar
  2. 2.
    Chelli R, Gervasio FL (2002) Stacking and T-shape competition in aromatic–aromatic amino acid interactions. J Am Chem Soc. CrossRefPubMedGoogle Scholar
  3. 3.
    Bauza A, Quiñonero D, Frontera A, Deya PM (2015) Halogen bonding versus chalcogen and pnicogen bonding : a combined Cambridge structural database and theoretical. CrystEngComm. CrossRefGoogle Scholar
  4. 4.
    Elstner M, Hobza P, Frauenheim T et al (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155. CrossRefGoogle Scholar
  5. 5.
    Clark T, Hennemann M, Clark T et al (2007) Halogen bonding : the σ-hole. J Mol Model. CrossRefPubMedGoogle Scholar
  6. 6.
    Tóth G, Murphy RF, Lovas S (2001) Stabilization of local structures by π–CH and aromatic–backbone amide interactions involving prolyl and aromatic residues. Protein Eng Des Sel 14:543–547. CrossRefGoogle Scholar
  7. 7.
    Sci C, Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201. CrossRefGoogle Scholar
  8. 8.
    Williams HJ, Hwang S, Shao Q et al (2016) Methanol strengthens hydrogen bonds and weakens hydrophobic interactions in proteins: a combined molecular dynamics and NMR study. J Phys Chem. CrossRefGoogle Scholar
  9. 9.
    Thorpe I, Thorpe IF, Zhou J, Voth GA (2008) Peptide folding using multiscale coarse- grained models. J Phys Chem. CrossRefGoogle Scholar
  10. 10.
    England JL, Haran G (2011) Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu Rev Phys Chem 62:257–277. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stephens PJ (1985) Theory of vibrational circular dichroism. J Phys Chem 89:748–752. CrossRefGoogle Scholar
  12. 12.
    Stephens PJ (1987) Gauge dependence of vibrational magnetic dipole transition moments and rotational strengths. J Phys Chem 91:1712–1715. CrossRefGoogle Scholar
  13. 13.
    Barron LD, Buckingham AD (2010) Vibrational optical activity. Chem Phys Lett 492:199–213CrossRefGoogle Scholar
  14. 14.
    Bour P, Zaruba K, Urbanova M et al (2000) Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study. Chirality 12:191–198.;2-W CrossRefPubMedGoogle Scholar
  15. 15.
    Devlin FJ, Stephens PJ, Cheeseman JR et al (1996) Prediction of vibrational circular dichroism spectra using density functional theory: camphor and fenchone. J Am Chem Soc 118:6327–6328CrossRefGoogle Scholar
  16. 16.
    Freedman TB, Chernovitz AC, Zuk WM et al (1988) Vibrational circular dichroism in the methine bending modes of amino acids and dipeptides. J Am Chem Soc 110:6970–6974. CrossRefGoogle Scholar
  17. 17.
    Ganesan A, Brunger MJ, Wang F (2013) A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra. Eur Phys J D 67:229. CrossRefGoogle Scholar
  18. 18.
    Ji Z, Santamaria R, Garzón IL (2010) Vibrational circular dichroism and IR absorption spectra of amino acids: a density functional study. J Phys Chem A 114:3591–3601. CrossRefPubMedGoogle Scholar
  19. 19.
    Rode JE, Dobrowolski JC, Sadlej J (2013) Prediction of l-methionine VCD spectra in the gas phase and water solution. J Phys Chem B 117:14202–14214. CrossRefPubMedGoogle Scholar
  20. 20.
    Sadlej J, Dobrowolski JC, Rode JE (2010) VCD spectroscopy as a novel probe for chirality transfer in molecular interactions. Chem Soc Rev 39:1478–1488. CrossRefPubMedGoogle Scholar
  21. 21.
    Teodorescu F, Naubron J-V, Uncuţa C et al (2014) Vibrational circular dichroism of 2,6-di-sec-butyl-4-methylpyridine and 2,6-di-sec-butyl-4-methylpyridine-N-oxide: theoretical evidence on the existence of multiple –CH, –CH2, and –CH3···O intramolecular hydrogen bonds on the nitroxide oxygen. Tetrahedron Asymmetry 25:725–735. CrossRefGoogle Scholar
  22. 22.
    Losada M, Xu Y (2007) Chirality transfer through hydrogen-bonding: experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys Chem Chem Phys 9:3127–3135. CrossRefPubMedGoogle Scholar
  23. 23.
    Sadlej J, Dobrowolski JC, Rode JE (2010) VCD spectroscopy as a novel probe for chirality transfer in molecular interactions. Chem Soc Rev 39:1478–1488. CrossRefPubMedGoogle Scholar
  24. 24.
    Giovannini T, Olszòwka M, Cappelli C (2016) Effective fully polarizable QM/MM approach to model vibrational circular dichroism spectra of systems in aqueous solution. J Chem Theory Comput 12:5483–5492. CrossRefPubMedGoogle Scholar
  25. 25.
    Lambie B, Ramaekers R, Maes G (2004) Conformational behavior of serine: an experimental matrix-isolation FT-IR and theoretical DFT (B3LYP)/6-31++G ** study. J Phys Chem 108:10426–10433CrossRefGoogle Scholar
  26. 26.
    Riffet V, Frison G, Bouchoux G (2011) Acid–base thermochemistry of gaseous oxygen and sulfur substituted. Phys Chem Chem Phys 13:18561–18580. CrossRefPubMedGoogle Scholar
  27. 27.
    Bouchoux G (2012) Gas phase basicities of polyfunctional molecules. Part 3: amino acids. Mass Spectrom Rev 31:391–435. CrossRefPubMedGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB (2009) Gaussian 09, Revision D. 01. Gaussian, WallingfordGoogle Scholar
  29. 29.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  30. 30.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032. CrossRefGoogle Scholar
  31. 31.
    Cammi R, Cappelli C, Corni S, Tomasi J (2000) On the calculation of infrared intensities in solution within the polarizable continuum model. J Phys Chem A 104:9874–9879. CrossRefGoogle Scholar
  32. 32.
    Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007. CrossRefPubMedGoogle Scholar
  33. 33.
    Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Halim MA, Shaw DM, Poirier RA (2010) Medium effect on the equilibrium geometries, vibrational frequencies and solvation energies of sulfanilamide. J Mol Struct Theochem 960:63–72. CrossRefGoogle Scholar
  35. 35.
    Cochran W, Penfold BR (1952) The crystal structure of l-glutamine. Acta Crystallogr 5:644–653. CrossRefGoogle Scholar
  36. 36.
    Gunasekaran S, Bright A (2010) Experimental and semi-empirical computations of the vibrational spectra of methionine, homocysteine and cysteine. Arch Phys Res 1:12–26Google Scholar
  37. 37.
    Kistenmacher TJ, Rand GA, Marsh RE (1974) Refinements of the crystal structures of dl-serine and anhydrous l-serine. Acta Cryst B 30:2573–2578CrossRefGoogle Scholar
  38. 38.
    Matsuura H, Yoshida H, Hieda M et al (2003) Experimental evidence for intramolecular blue-shifting C–H O hydrogen bonding by matrix-isolation infrared spectroscopy. J Am Chem Soc 125:13910–13911. CrossRefPubMedGoogle Scholar
  39. 39.
    Desiraju GR (1991) The C–H O hydrogen bond in crystals: what is it? Acc Chem Res 24:290–296. CrossRefGoogle Scholar
  40. 40.
    Hirao H, Wang X (2014) Hydrogen bonding. In: The Chemical bond. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 501–522Google Scholar
  41. 41.
    Naganathappa M, Chaudhari A, Chaudhari BA (2015) Spectroscopic characterization of cysteine and methionine using density functional theory method. Astrophys Space Sci 357:42. CrossRefGoogle Scholar
  42. 42.
    Fried SD, Bagchi S, Boxer SG (2013) Measuring electrostatic fields in both hydrogen bonding and non-hydrogen bonding environments using carbonyl vibrational probes. J Am Chem Soc 135:11181–11192. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Diem M (1988) Infrared vibrational circular dichroism of alanine in the mid-infrared region: isotopic effects. J Am Chem Soc 110:6967–6970. CrossRefGoogle Scholar
  44. 44.
    Heshmat M, Nicu VP, Baerends EJ (2012) On the equivalence of conformational and enantiomeric changes of atomic configuration for vibrational circular dichroism signs. J Phys Chem A 116:3454–3464. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Quantum ChemistryThe Red-Green Research Centre, BICCBDhakaBangladesh
  2. 2.Department of ChemistryUniversity of DhakaDhakaBangladesh

Personalised recommendations