Advertisement

Structural, electronic and mechanical properties of single-walled AlN and GaN nanotubes via DFT/B3LYP

  • Giovanne B. Pinhal
  • Naiara L. Marana
  • Guilherme S. L. Fabris
  • Julio R. SambranoEmail author
Regular Article
  • 36 Downloads

Abstract

Density functional theory with B3LYP hybrid functional and all-electron basis set was applied to study the AlN (SWAlNNTs) and GaN (SWGaNNTs) single-walled nanotubes.The structural and electronic properties were analyzed in function of its diameter and chiralities. Additionally, the elastic and piezoelectric constants were calculated for armchair, zigzag and chiral nanotubes. The simulations showed that both, SWAlNNTs and SWGaNNTs, are easily formed from the graphene-like surface than from the respective bulk. As the diameter increases, the band gap energy also increases, but converges to the band gap energy of its precursor surface. The calculated elastic constants for bulk, graphene-like surface and nanotubes of AlN and GaN show that AlN, in all configurations, is more rigid than GaN. This effect can be related to the more pronounced ionic character of Al–N bond, which confers the stiffness of material. This stiffness affects the AlN nanotube formation, especially that with small diameter, that has the higher energy strain and formation energy for all chiralities. The AlN configurations have piezoelectric response ~ 25% greater than GaN. The AlN zigzag nanotube has the higher piezoelectric constant e11, i.e., 0.84 C/m2. Compared to AlN bulk, the e11 of nanotube is less than the e33 of its bulk, 1.44 C/m2, but is higher when compared with the others’ piezoelectric constants of bulk and surface. Therefore, although the nanotubes present the same stability in diameters above 20 Å, AlN and GaN differ in their band gap energy, piezoelectric response and elastic constant, which will interfere directly with their application in electronic and piezoelectric devices, besides a possible functionalization, such as doping or molecule adsorption.

Keywords

Nanotube Piezoelectric response GaN AlN 

Notes

Acknowledgements

This work is supported by Brazilian Funding Agencies: CAPES (8881.068492/2014-01, 787027/2013), FAPESP (2016/07476-9, 2016/25500-4 and 2013/07296-2). The computational facilities were supported by resources supplied by Molecular Simulations Laboratory, São Paulo State University, Bauru, Brazil.

Supplementary material

214_2019_2418_MOESM1_ESM.docx (458 kb)
Supplementary material 1 (DOCX 458 kb)

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58.  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605.  https://doi.org/10.1038/363603a0 CrossRefGoogle Scholar
  3. 3.
    Baei MT, Peyghan AA, Bagheri Z (2013) Fluorination of the exterior surface of AlN nanotube: a DFT study. Superlattices Microstruct 53:9–15.  https://doi.org/10.1016/j.spmi.2012.09.010 CrossRefGoogle Scholar
  4. 4.
    Noei M, Salari AA, Ahmadaghaei N et al (2013) DFT study of the dissociative adsorption of HF on an AlN nanotube. C R Chim 16:985–989.  https://doi.org/10.1016/j.crci.2013.05.007 CrossRefGoogle Scholar
  5. 5.
    Li H, Liu C, Liu G et al (2014) Single-crystalline GaN nanotube arrays grown on c-Al2O3 substrates using InN nanorods as templates. J Cryst Growth 389:1–4.  https://doi.org/10.1016/j.jcrysgro.2013.11.066 CrossRefGoogle Scholar
  6. 6.
    Zou CW, Yin ML, Li M et al (2007) GaN films deposited by middle-frequency magnetron sputtering. Appl Surf Sci 253:9077–9080.  https://doi.org/10.1016/j.apsusc.2007.05.037 CrossRefGoogle Scholar
  7. 7.
    Lei T, Ludwig KF, Moustakas TD (1993) Heteroepitaxy, polymorphism, and faulting in GaN thin films on silicon and sapphire substrates. J Appl Phys 74:4430–4437.  https://doi.org/10.1063/1.354414 CrossRefGoogle Scholar
  8. 8.
    Maruska HP, Tietjen JJ (1969) The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett 15:327–329.  https://doi.org/10.1063/1.1652845 CrossRefGoogle Scholar
  9. 9.
    Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94:3675–3696.  https://doi.org/10.1063/1.1600519 CrossRefGoogle Scholar
  10. 10.
    Feneberg M, Leute RAR, Neuschl B et al (2010) High-excitation and high-resolution photoluminescence spectra of bulk AlN. Phys Rev B 82:75208.  https://doi.org/10.1103/PhysRevB.82.075208 CrossRefGoogle Scholar
  11. 11.
    Kangawa Y, Kakimoto K (2010) AlN synthesis on AlN/SiC template using Li–Al–N solvent. Phys Status Solidi Appl Mater Sci 207:1292–1294.  https://doi.org/10.1002/pssa.200983566 CrossRefGoogle Scholar
  12. 12.
    Morkoç H, Strite S, Gao GB et al (1994) Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J Appl Phys 76:1363–1398.  https://doi.org/10.1063/1.358463 CrossRefGoogle Scholar
  13. 13.
    Arakawa Y (2001) Progress in quantum dots for optoelectronics applications. Photonics Technol 21st Century 4598:106–112.  https://doi.org/10.1117/12.491501 CrossRefGoogle Scholar
  14. 14.
    Pérez-Tomás A, Catalàn G, Fontserè A et al (2015) Nanoscale conductive pattern of the homoepitaxial AlGaN/GaN transistor. Nanotechnology 26:115203.  https://doi.org/10.1088/0957-4484/26/11/115203 CrossRefPubMedGoogle Scholar
  15. 15.
    Przybyla RJ, Tang H-Y, Shelton SE et al (2014) 12.1 3D ultrasonic gesture recognition. In: IEEE international solid-state circuits conference digest of technical papers. IEEE, pp 210–211Google Scholar
  16. 16.
    Ahmadi Peyghan A, Omidvar A, Hadipour NL et al (2012) Can aluminum nitride nanotubes detect the toxic NH3 molecules? Phys E Low Dimens Syst Nanostruct 44:1357–1360.  https://doi.org/10.1016/j.physe.2012.02.018 CrossRefGoogle Scholar
  17. 17.
    Taniyasu Y, Kasu M, Makimoto T (2006) An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325–328.  https://doi.org/10.1038/nature04760 CrossRefPubMedGoogle Scholar
  18. 18.
    Sodré JM, Longo E, Taft CA et al (2017) Electronic structure of GaN nanotubes. C R Chim 20:190–196.  https://doi.org/10.1016/j.crci.2016.05.023 CrossRefGoogle Scholar
  19. 19.
    Xu B, Lu AJ, Pan BC, Yu QX (2005) Atomic structures and mechanical properties of single-crystal GaN nanotubes. Phys Rev B 71:125434.  https://doi.org/10.1103/PhysRevB.71.125434 CrossRefGoogle Scholar
  20. 20.
    Zhang M, Shi J-J (2014) Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes. Chin Phys B 23:17301.  https://doi.org/10.1088/1674-1056/23/1/017301 CrossRefGoogle Scholar
  21. 21.
    Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) A theoretical study of CO adsorption on aluminum nitride nanotubes. Struct Chem 23:653–657.  https://doi.org/10.1007/s11224-011-9911-z CrossRefGoogle Scholar
  22. 22.
    Noei M, Ebrahimikia M, Saghapour Y et al (2015) Removal of ethyl acetylene toxic gas from environmental systems using AlN nanotube. J Nanostruct Chem 5:213–217.  https://doi.org/10.1007/s40097-015-0152-3 CrossRefGoogle Scholar
  23. 23.
    Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens Actuators B Chem 161:1025–1029.  https://doi.org/10.1016/j.snb.2011.12.001 CrossRefGoogle Scholar
  24. 24.
    Jiao Y, Du A, Zhu Z et al (2010) A density functional theory study of CO2 and N2 adsorption on aluminium nitride single walled nanotubes. J Mater Chem 20:10426.  https://doi.org/10.1039/c0jm01416h CrossRefGoogle Scholar
  25. 25.
    Zhao M, Xia Y, Liu X et al (2006) First-principles calculations of AlN nanowires and nanotubes: atomic structures, energetics, and surface states. J Phys Chem B 110:8764–8768.  https://doi.org/10.1021/jp056755f CrossRefPubMedGoogle Scholar
  26. 26.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  27. 27.
    Erba A, Baima J, Bush I, Orlando R, Dovesi R (2017) Large-scale condensed matter DFT simulations: performance and capabilities of the CRYSTAL code. J Chem Theory Comput 13:5019–5027.  https://doi.org/10.1021/acs.jctc.7b00687
  28. 28.
    Montanari B, Civalleri B, Zicovich-Wilson CM, Dovesi R (2006) Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3). Int J Quantum Chem 106:1703–1714.  https://doi.org/10.1002/qua.20938 CrossRefGoogle Scholar
  29. 29.
    Pandey R, Jaffe JE, Harrison NM (1994) Ab initio study of high pressure phase transition in GaN. J Phys Chem Solids 55:1357–1361.  https://doi.org/10.1016/0022-3697(94)90221-6 CrossRefGoogle Scholar
  30. 30.
    Dovesi R, Causa’ M, Orlando R et al (1990) Ab initio approach to molecular crystals: a periodic Hartree–Fock study of crystalline urea. J Chem Phys 92:7402–7411.  https://doi.org/10.1063/1.458592 CrossRefGoogle Scholar
  31. 31.
    Fabris GSL, Marana NL, Longo E, Sambrano JR (2018) Piezoelectric response of porous nanotubes derived from hexagonal boron nitride under strain influence. ACS Omega 10:13413–13421.  https://doi.org/10.1021/acsomega.8b01634 CrossRefGoogle Scholar
  32. 32.
    Marana NL, Casassa S, Longo E, Sambrano JR (2016) Structural, electronic, vibrational, and topological analysis of single-walled zinc oxide nanotubes. J Phys Chem C 120:6814–6823.  https://doi.org/10.1021/acs.jpcc.5b11905 CrossRefGoogle Scholar
  33. 33.
    Marana NL, Albuquerque AR, La Porta FA et al (2016) Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes. J Solid State Chem 237:36–47.  https://doi.org/10.1016/j.jssc.2016.01.017 CrossRefGoogle Scholar
  34. 34.
    Fabris GSL, Marana NL, Longo E, Sambrano JR (2018) Porous silicene and silicon graphenylene-like surfaces: a DFT study. Theor Chem Acc 137:13.  https://doi.org/10.1007/s00214-017-2188-6 CrossRefGoogle Scholar
  35. 35.
    Marana NL, Casassa SM, Sambrano JR (2017) Piezoelectric, elastic, infrared and Raman behavior of ZnO wurtzite under pressure from periodic DFT calculations. Chem Phys 485–486:98–107.  https://doi.org/10.1016/j.chemphys.2017.02.001 CrossRefGoogle Scholar
  36. 36.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138.  https://doi.org/10.1007/BF00549096 CrossRefGoogle Scholar
  37. 37.
    Zicovich-Wilson CM, Hô M, Navarrete-López A, Casassa SM (2016) Hirshfeld-I charges in linear combination of atomic orbitals periodic calculations. Theor Chem Acc 135:188.  https://doi.org/10.1007/s00214-016-1942-5 CrossRefGoogle Scholar
  38. 38.
    Schulz H, Thiemann KH (1977) Crystal structure refinement of AlN and GaN. Solid State Commun 23:815–819.  https://doi.org/10.1016/0038-1098(77)90959-0 CrossRefGoogle Scholar
  39. 39.
    Mazini MC, Sambrano JR, Cavalheiro AA, da Silva JHD, Leite DMG (2010) Efeitos da Adição de Átomos de Mn na Rede do Gan via Métodos de Estrutura Eletrônica. Quim Nova 33:834–840.  https://doi.org/10.1590/S0100-40422010000400013 CrossRefGoogle Scholar
  40. 40.
    Smith AR, Feenstra RM, Greve DW, Shin MS, Skowronski M, Neugebauer J, Northrup JE (1999) GaN (0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations. Surf Sci 423:70–84.  https://doi.org/10.1016/S0039-6028(98)00903-0 CrossRefGoogle Scholar
  41. 41.
    Northrup JE, Neugebauer J (1996) Theory of GaN (10\(\bar{1}\)0) and (11\(\bar{2}\)0) surfaces. Phys Rev B.  https://doi.org/10.1103/physrevb.53.r10477
  42. 42.
    Sai N, Mele EJ (2003) Microscopic theory for nanotube piezoelectricity. Phys Rev B.  https://doi.org/10.1103/physrevb.68.241405 CrossRefGoogle Scholar
  43. 43.
    Tu ZC, Hu X (2006) Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys Rev B.  https://doi.org/10.1103/physrevb.74.035434 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Modeling and Molecular Simulation Group - CDMFSão Paulo State University, UNESPBauruBrazil

Personalised recommendations