State-to-state dynamics of the Cl(2P) + C2H6(ν5, ν1 = 0, 1) → HCl(v′, j′) + C2H5 hydrogen abstraction reactions

  • Jose C. Corchado
  • Moises G. Chamorro
  • Cipriano Rangel
  • Joaquin Espinosa-GarciaEmail author
Regular Article


Using quasi-classical trajectory calculations on a recently developed full-dimensional potential energy surface, the effects of ethane reactant vibrational excitation, ν5 = 1, on the dynamics of the title reaction were analyzed. By analyzing the classical results from a quantum-mechanical point of view, we performed state-to-state calculations to show the influence of vibrational excitation on the vibrational populations of the two coproducts, as well as rotational distributions of the diatomic HCl(v′, j′) product. We found that excitation of the C2H6(ν5 = 1) mode by one quantum increases reactivity by 9% with respect to the ground-state reaction, where the ethyl radical coproduct receives an important internal energy, ~ 30% of the available energy, There are many populated vibrational states in the ethyl radical, although the population in each is very low, 1–5%. In fact, the most populated vibrational state, C2H5 ground state, presents a population of only ~ 10%. The HCl(v′ = 0, 1) product shows non-inverted vibrational populations, 88:12%, with relatively hot rotational distributions, and where the HCl(v′ = 1) product is forward-scattered. These theoretical results qualitatively reproduce the only experimental study by Zare et al., 20 years ago, taking into account that the authors themselves recognized that their results were not quantitative. In addition, we analyze two related issues: mode specificity and translational versus vibrational efficiency to promote reactivity, which have not been experimentally studied. We found that independent excitation of the ethane C–H stretching ν5 and ν1 modes, which differ by only 15 cm−1, shows similar dynamics behavior, which discards mode specificity. Finally, vibrational energy promotes reactivity only slightly more effectively than an equal amount of energy as translation. This result was rationalized by the sudden vector projection model for this “central” barrier reaction, to which Polanyi’s rules cannot be applied.


Vibrational excitation effects Potential energy surface Application of the NMA approach to large molecules Comparison with experiment 



This work was partially supported by Junta de Extremadura, Spain (Project No. GR15015).


  1. 1.
    Polanyi JC (1972) Acc Chem Res 5:161CrossRefGoogle Scholar
  2. 2.
    Nesbitt DJ, Field RW (1996) J Phys Chem A 100:12735CrossRefGoogle Scholar
  3. 3.
    Kandel SA, Rakitzis TP, Lev-On T, Zare RN (1997) Chem Phys Lett 265:121CrossRefGoogle Scholar
  4. 4.
    Kandel SA, Rakitzis TP, Lev-On T, Zare RN (1996) J Chem Phys 105:7550CrossRefGoogle Scholar
  5. 5.
    Bass MJ, Brouard M, Willante C, Kitsppoulos TN, Samartzis PC, Toomes RL (2003) J Chem Phys 119:7168CrossRefGoogle Scholar
  6. 6.
    Rangel C, Espinosa-Garcia J (2018) Phys Chem Chem Phys 20:3925CrossRefGoogle Scholar
  7. 7.
    Espinosa-Garcia J, Martinez-Nuñez E, Rangel C (2018) J Phys Chem A 122:2626CrossRefGoogle Scholar
  8. 8.
    Hu X, Hase WL, Pirraglia Y (1991) J Comput Chem 12:1014CrossRefGoogle Scholar
  9. 9.
    Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu Dh, Peslherbe GH, Swamy KN, Van de Linde SR, Varandas AJC, Wang H, Wolf RJ (1996) QCPE Bull 16:671Google Scholar
  10. 10.
    Bonnet L, Rayez JC (1997) Chem Phys Lett 277:183CrossRefGoogle Scholar
  11. 11.
    Bañares L, Aoiz FJ, Honvaul P, Bussery-Honvault B, Launay JM (2003) J Chem Phys 118:565CrossRefGoogle Scholar
  12. 12.
    Bonnet L, Rayez JC (2004) Chem Phys Lett 397:106CrossRefGoogle Scholar
  13. 13.
    Xie T, Bowman JM, Duff JW, Braunstein M, Ramachandran B (2005) J Chem Phys 122:014301CrossRefGoogle Scholar
  14. 14.
    González-Martínez ML, Bonnet L, Larrégaray P, Rayez JC (2007) J Chem Phys 126:041102CrossRefGoogle Scholar
  15. 15.
    González-Martínez ML, Arbelo-González W, Rubayo-Soneira J, Bonnet L, Rayez JC (2008) Chem Phys Lett 463:65CrossRefGoogle Scholar
  16. 16.
    Bonnet L (2008) J Chem Phys 128:044109CrossRefGoogle Scholar
  17. 17.
    Bonnet L (2009) Chin J Chem Phys 22:210CrossRefGoogle Scholar
  18. 18.
    Czakó G, Bowman JM (2009) J Chem Phys 131:244302CrossRefGoogle Scholar
  19. 19.
    Bonnet L, Espinosa-Garcia J (2010) J Chem Phys 133:164108CrossRefGoogle Scholar
  20. 20.
    Bonnet L (2013) Int Rev Phys Chem 32:171CrossRefGoogle Scholar
  21. 21.
    Corchado JC, Espinosa-Garcia J (2009) Phys Chem Chem Phys 11:10157CrossRefGoogle Scholar
  22. 22.
    Espinosa-Garcia J, Bonnet L, Corchado JC (2010) Phys Chem Chem Phys 12:3873CrossRefGoogle Scholar
  23. 23.
    Garcia E, Corchado JC, Espinosa-Garcia J (2012) Comput Theor Chem 990:47CrossRefGoogle Scholar
  24. 24.
    Corchado JC, Espinosa-Garcia J, Li J, Guo H (2013) J Chem Phys A 117:11648CrossRefGoogle Scholar
  25. 25.
    Monge-Palacios M, Corchado JC, Espinosa-Garcia J (2012) Phys Chem Chem Phys 14:7497CrossRefGoogle Scholar
  26. 26.
    Monge-Palacios M, Espinosa-Garcia J (2013) J Phys Chem A 117:5042CrossRefGoogle Scholar
  27. 27.
    Espinosa-Garcia J, Corchado JC (2016) J Phys Chem B 120:1446CrossRefGoogle Scholar
  28. 28.
    Duchovic R, Schatz GC (1986) J Chem Phys 84:2239CrossRefGoogle Scholar
  29. 29.
    Schatz GC (1984) Comput Phys Commun 51:135CrossRefGoogle Scholar
  30. 30.
    Truhlar DG, Blais NC (1977) J Chem Phys 67:1532CrossRefGoogle Scholar
  31. 31.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99CrossRefGoogle Scholar
  32. 32.
    Jiang B, Guo H (2013) J Chem Phys 138:234104CrossRefGoogle Scholar
  33. 33.
    Song H, Li J, Jiang B, Yang M, Lu Y, Guo H (2014) J Chem Phys 140:084307CrossRefGoogle Scholar
  34. 34.
    Jiang B, Guo H (2013) J Am Chem Soc 135:15251CrossRefGoogle Scholar
  35. 35.
    Li J, Guo H (2014) J Phys Chem A 118:2415Google Scholar
  36. 36.
    Jiang B, Guo H (2014) J Chin Chem Soc 61:847CrossRefGoogle Scholar
  37. 37.
    Rangel C, Corchado JC, Espinosa-Garcia J (2006) J Phys Chem A 110:10375CrossRefGoogle Scholar
  38. 38.
    Simpson WR, Rakitzis TP, Kandel SA, Lev-On T, Zare RN (1996) J Phys Chem 100:7938CrossRefGoogle Scholar
  39. 39.
    Espinosa-Garcia J, Rangel C, Garcia-Bernaldez JC (2015) Phys Chem Chem Phys 17:6009CrossRefGoogle Scholar
  40. 40.
    Levine RD (1990) J Chem Phys 94:8872CrossRefGoogle Scholar
  41. 41.
    Yoon S, Henton S, Zirkovic AN, Crim FF (2002) J Chem Phys 116:10744CrossRefGoogle Scholar
  42. 42.
    Rangel C, Navarrete M, Corchado JC, Espinosa-Garcia J (2006) J Chem Phys 124:124306CrossRefGoogle Scholar
  43. 43.
    Sanson J, Corchado JC, Rangel C, Espinosa-Garcia J (2006) J Chem Phys 124:074312CrossRefGoogle Scholar
  44. 44.
    Kandel SA, Rakitzis TP, Lev-On T, Zare RN (1996) J Phys Chem A 102:2270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química Física, Instituto de Computación Científica Avanzada de ExtremaduraUniversidad de ExtremaduraBadajozSpain

Personalised recommendations