Advertisement

Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions

  • Muhammad ShahbazEmail author
  • Krzysztof Szalewicz
Regular Article
  • 155 Downloads
Part of the following topical collections:
  1. In Memoriam of János Ángyán

Abstract

Since semilocal density functional theory (DFT) approximations cannot recover the dispersion components of interaction energies at intermonomer separations near van der Waals minima and larger, dispersion energies computed by methods other than semilocal DFTs are often added to DFT interaction energies such dispersion energies are assessed here by comparing them to accurate dispersion energies obtained from symmetry-adapted perturbation theory on a set of molecular dimers, including variations of intermonomer separations. The evaluated methods include nonlocal DFT correlation functionals, parameterized atom–atom dispersion functions originating from the asymptotic expansion, and methods based on models of atoms in molecules. In contrast to many published comparisons of such methods focused on total interaction energies, our comparisons evaluate the performance on the actual physical quantity for which these methods have been designed. This performance is discussed in the context of the physical soundness of the methods. Our results show that atom–atom functions reproduce dispersion energies best, with a mean absolute percentage error of the order of 10%. The nonlocal correlation functionals perform much worse, with errors in the range 24–49%, far from what could be called quantitative reproduction of this quantity. The only exception is the recently proposed damped asymptotic dispersion energy functional which gave an error of 12%. The atom-in-molecule methods also gave large errors, above 29%.

Keywords

Density functional theory Dispersion energy Nonlocal correlation functional D3 vdW-DF VV09 VV10 MBD XDM DADE DFT+D 

Notes

Acknowledgements

We thank Dr. Marcin Modrzejewski for providing his code for the MBD calculations. This work was supported by the U.S. Army Research Laboratory and the Army Research Office under Grant W911NF-13-1-0387, as well as by the National Science Foundation Grant CHE-1566036. Computer resources were provided by the University of Delaware Computing Center.

Supplementary material

214_2019_2414_MOESM1_ESM.xlsx (157 kb)
Supplementary material 1 (xlsx 157 KB)

References

  1. 1.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864Google Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133Google Scholar
  3. 3.
    Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689Google Scholar
  4. 4.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244Google Scholar
  5. 5.
    Langreth DC, Mehl MJ (1983) Phys Rev A 26:1809Google Scholar
  6. 6.
    Perdew JP, Wang Y (1986) Phys Rev B 33:8800Google Scholar
  7. 7.
    Becke AD (1988) Phys Rev A 38:3098Google Scholar
  8. 8.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671Google Scholar
  9. 9.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865PubMedGoogle Scholar
  10. 10.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401PubMedGoogle Scholar
  11. 11.
    Sun J, Ruzsinszky A, Perdew JP (2015) Phys Rev Lett 115:036402PubMedGoogle Scholar
  12. 12.
    Kristyán S, Pulay P (1994) Chem Phys Lett 229:175Google Scholar
  13. 13.
    Gunnarsson O, Jonson M, Lundqvist B (1979) Phys Rev B 20:3136Google Scholar
  14. 14.
    Shahbaz M, Szalewicz K (2018) Phys Rev Lett 121:113402PubMedGoogle Scholar
  15. 15.
    Eisenschitz R, London F (1930) Z Phys 60:491Google Scholar
  16. 16.
    Jeziorski B, Moszyński R, Szalewicz K (1994) Chem Rev 94:1887Google Scholar
  17. 17.
    Szalewicz K (2012) Wiley Interdiscip Rev Comput Mol Sci 2:254Google Scholar
  18. 18.
    Kochanski E (1971) Chem Phys Lett 10:543Google Scholar
  19. 19.
    Jeziorski B, van Hemert M (1976) Mol Phys 31:713Google Scholar
  20. 20.
    Chalasinski G, Jeziorski B, Andzelm J, Szalewicz K (1977) Mol Phys 33:971Google Scholar
  21. 21.
    Szalewicz K, Jeziorski B (1979) Mol Phys 38:191Google Scholar
  22. 22.
    Rybak S, Jeziorski B, Szalewicz K (1991) J Chem Phys 95:6576Google Scholar
  23. 23.
    Williams HL, Szalewicz K, Moszyński R, Jeziorski B (1995) J Chem Phys 103:4586Google Scholar
  24. 24.
    Moszyński R, Jeziorski B, Szalewicz K (1993) Int J Quantum Chem 45:409Google Scholar
  25. 25.
    Korona T, Jeziorski B (2008) J Chem Phys 128:144107PubMedGoogle Scholar
  26. 26.
    Misquitta AJ, Szalewicz K (2002) Chem Phys Lett 357:301Google Scholar
  27. 27.
    Misquitta AJ, Jeziorski B, Szalewicz K (2003) Phys Rev Lett 91:033201PubMedGoogle Scholar
  28. 28.
    Hesselmann A, Jansen G (2003) Chem Phys Lett 367:778Google Scholar
  29. 29.
    Misquitta AJ, Szalewicz K (2005) J Chem Phys 122:214109PubMedGoogle Scholar
  30. 30.
    Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103PubMedGoogle Scholar
  31. 31.
    Hesselmann A, Jansen G, Schütz M (2005) J Chem Phys 122:014103Google Scholar
  32. 32.
    Bukowski R, Podeszwa R, Szalewicz K (2005) Chem Phys Lett 414:111Google Scholar
  33. 33.
    Podeszwa R, Cencek W, Szalewicz K (2012) J Chem Theory Comput 8:1963PubMedGoogle Scholar
  34. 34.
    Podeszwa R, Bukowski R, Szalewicz K (2006) J Chem Theory Comput 2:400PubMedGoogle Scholar
  35. 35.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401PubMedGoogle Scholar
  36. 36.
    Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101Google Scholar
  37. 37.
    Vydrov OA, Van Voorhis T (2009) Phys Rev Lett 103:063004PubMedGoogle Scholar
  38. 38.
    Vydrov OA, Van Voorhis T (2010) J Chem Phys 133:244103PubMedGoogle Scholar
  39. 39.
    Shahbaz M, Szalewicz K (2018) Dispersion energy from local polarizability density (submitted)Google Scholar
  40. 40.
    Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Phys Rev B 76:125112Google Scholar
  41. 41.
    Berland K, Cooper VR, Lee K, Schröder E, Thonhauser T, Hyldgaard P, Lundqvist BI (2015) Rep Prog Phys 78:066501PubMedGoogle Scholar
  42. 42.
    Stone AJ (2013) The theory of intermolecular forces, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  43. 43.
    Ángyán JG, Jansen G, Loos M, Hattig C, Hess BA (1994) Chem Phys Lett 219:267Google Scholar
  44. 44.
    Hättig C, Jansen G, Hess BA, Ángyán JG (1997) Mol Phys 91:145Google Scholar
  45. 45.
    Rob F, Szalewicz K (2013) Chem Phys Lett 572:146Google Scholar
  46. 46.
    Rob F, Szalewicz K (2013) Mol Phys 111:1430Google Scholar
  47. 47.
    Wu Q, Yang W (2002) J Chem Phys 116:515Google Scholar
  48. 48.
    Grimme S (2004) J Comput Chem 25:1463PubMedGoogle Scholar
  49. 49.
    Grimme S (2006) J Comput Chem 27:1787PubMedGoogle Scholar
  50. 50.
    Grimme S, Antony J, Elrich S, Krieg H (2010) J Chem Phys 132:154104PubMedGoogle Scholar
  51. 51.
    Caldeweyher E, Bannwarth C, Grimme S (2017) J Chem Phys 147:034112PubMedGoogle Scholar
  52. 52.
    Pernal K, Podeszwa R, Patkowski K, Szalewicz K (2009) Phys Rev Lett 103:263201PubMedGoogle Scholar
  53. 53.
    Podeszwa R, Pernal K, Patkowski K, Szalewicz K (2010) J Phys Chem Lett 1:550Google Scholar
  54. 54.
    Bucko T, Hafner J, Lebegue S, Ángyán JG (2010) J Phys Chem A 114:11814PubMedGoogle Scholar
  55. 55.
    Becke AD, Johnson ER (2005) J Chem Phys 122:154104PubMedGoogle Scholar
  56. 56.
    Becke AD, Johnson ER (2005) J Chem Phys 123:154101PubMedGoogle Scholar
  57. 57.
    Ángyán JG (2007) J Chem Phys 127:024108PubMedGoogle Scholar
  58. 58.
    Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005PubMedGoogle Scholar
  59. 59.
    Tkatchenko A, DiStasio RA, Car R, Scheffler M (2012) Phys Rev Lett 108:236402PubMedGoogle Scholar
  60. 60.
    Bucko T, Lebegue S, Hafner J, Ángyán JG (2013) Phys Rev B 87:064110Google Scholar
  61. 61.
    Bucko T, Lebegue S, Hafner J, Ángyán JG (2013) J Chem Theory Comput 9:4293PubMedGoogle Scholar
  62. 62.
    Bucko T, Lebegue S, Ángyán JG, Hafner J (2014) J Chem Phys 141:034114PubMedGoogle Scholar
  63. 63.
    Bucko T, Lebegue S, Gould T, Ángyán JG (2016) J Phys Condens Matter 28:045201PubMedGoogle Scholar
  64. 64.
    Murray ED, Lee K, Langreth DC (2009) J Chem Theory Comput 5:2754PubMedGoogle Scholar
  65. 65.
    Austin A, Petersson GA, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) J Chem Theory Comput 8:4989PubMedGoogle Scholar
  66. 66.
    Ángyán JG, Gerber IC, Toulouse J, Savin A (2005) Phys Rev A 72:012510Google Scholar
  67. 67.
    Gerber IC, Ángyán JG (2005) Chem Phys Lett 416:370Google Scholar
  68. 68.
    Gerber IC, Ángyán JG (2007) J Chem Phys 126:044103PubMedGoogle Scholar
  69. 69.
    Toulouse J, Gerber IC, Jansen G, Savin A, Ángyán JG (2009) Phys Rev Lett 102:096404PubMedGoogle Scholar
  70. 70.
    Lebegue S, Harl J, Gould T, Ángyán JG, Kresse G, Dobson JF (2010) Phys Rev Lett 105:196401PubMedGoogle Scholar
  71. 71.
    Zhu WM, Toulouse J, Savin A, Ángyán JG (2010) J Chem Phys 132:244108PubMedGoogle Scholar
  72. 72.
    Toulouse J, Zhu W, Savin A, Jansen G, Ángyán JG (2011) J Chem Phys 135:084119PubMedGoogle Scholar
  73. 73.
    Lebegue S, Harl J, Gould T, Ángyán JG, Kresse G, Dobson JF (2012) Phys Rev Lett 105:196401Google Scholar
  74. 74.
    Ángyán JG, Liu R-F, Toulouse J, Jansen G (2011) J Chem Theory Comput 7:3116PubMedGoogle Scholar
  75. 75.
    Mussard B, Szalay PG, Ángyán JG (2014) J Chem Theory Comput 10:1968PubMedGoogle Scholar
  76. 76.
    Taylor DC, Ángyán JG, Galli G, Zhang C, Gygi F, Hirao K, Song JW, Rahul K, von Lilienfeld OA, Podeszwa R, Bulik IW, Henderson TM, Scuseria GE, Toulouse J, Truhlar DG, Peverati R, Szalewicz K (2016) J Chem Phys 145:124105PubMedGoogle Scholar
  77. 77.
    Claudot J, Kim WJ, Dixit A, Kim H, Gould T, Rocca D, Lebègue S (2018) J Chem Phys 148:064112PubMedGoogle Scholar
  78. 78.
    Patkowski K, Szalewicz K, Jeziorski B (2006) J Chem Phys 125:154107PubMedGoogle Scholar
  79. 79.
    Patkowski K, Szalewicz K, Jeziorski B (2010) Theor Chem Acc 127:211Google Scholar
  80. 80.
    Langreth DC, Perdew JP (1975) Solid State Commun 17:1425Google Scholar
  81. 81.
    Langreth DC, Perdew JP (1977) Phys Rev B 15:2884Google Scholar
  82. 82.
    Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274Google Scholar
  83. 83.
    Lindhard J (1954) Kgl Danske Videnskab Selskab Mat-Fys Medd 28(8):1–57Google Scholar
  84. 84.
    Bohr N, Lindhard J (1954) Mat Fys Medd Dan Vid Selsk 28(7):1–31Google Scholar
  85. 85.
    Nozieres P, Pines D (1958) Phys Rev 111:442Google Scholar
  86. 86.
    Rapcewicz K, Ashcroft N (1991) Phys Rev B 44:4032Google Scholar
  87. 87.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102PubMedGoogle Scholar
  88. 88.
    Lundqvist BI, Andersson Y, Shao H, Chan S, Langreth D (1995) Int J Quantum Chem 56:247Google Scholar
  89. 89.
    Hult E, Andersson Y, Lundqvist BI, Langreth DC (1996) Phys Rev Lett 77:2029PubMedGoogle Scholar
  90. 90.
    Dobson JF, Dinte BP (1996) Phys Rev Lett 76:1780PubMedGoogle Scholar
  91. 91.
    Andersson Y, Hult E, Apell P, Langreth DC, Lundqvist BI (1998) Solid Stat Commun 106:235Google Scholar
  92. 92.
    Andersson Y, Rydberg H (1999) Phys Scr 60:211Google Scholar
  93. 93.
    Vydrov OA, Van Voorhis T (2009) J Chem Phys 130:104105PubMedGoogle Scholar
  94. 94.
    Zhang Y, Yang W (1998) Phys Rev Lett 80:890Google Scholar
  95. 95.
    Cooper VR, Kong L, Langreth DC (2010) Phys Proc 3:1417Google Scholar
  96. 96.
    Berland K, Hyldgaard P (2014) Phys Rev B 89:035412Google Scholar
  97. 97.
    Berland K, Arter CA, Cooper VR, Lee K, Lundqvist BI, Schröder E, Thonhauser T, Hyldgaard P (2014) J Chem Phys 140:18A539PubMedGoogle Scholar
  98. 98.
    Hamada I (2014) Phys Rev B 89:121103Google Scholar
  99. 99.
    Tang KT, Toennies JP (1984) J Chem Phys 80:3726Google Scholar
  100. 100.
    Langreth DC, Lundqvist BI (2010) Phys Rev Lett 104:099303PubMedGoogle Scholar
  101. 101.
    Hepburn J, Scoles G, Penco R (1975) Chem Phys Lett 36:451Google Scholar
  102. 102.
    Gianturco FA, Paesani F, Laranjeira MF, Vassilenko V, Cunha MA, Shashkov AG, Zolotoukhina AF (1998) Mol Phys 94:605Google Scholar
  103. 103.
    Wu X, Vargas MC, Nayak S, Lotrich VL, Scoles G (2001) J Chem Phys 115:8748Google Scholar
  104. 104.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456PubMedGoogle Scholar
  105. 105.
    Smith DG, Burns LA, Patkowski K, Sherrill CD (2016) J Phys Chem Lett 7:2197PubMedGoogle Scholar
  106. 106.
    Salem L (1960) Mol Phys 3:441Google Scholar
  107. 107.
    Tang KT, Karplus M (1968) Phys Rev 171:70Google Scholar
  108. 108.
    Hirshfeld FL (1977) Theor Chim Acta 44:129Google Scholar
  109. 109.
    Otero-De-La-Roza A, Johnson ER (2013) J Chem Phys 138:204109PubMedGoogle Scholar
  110. 110.
    Donchev A (2006) J Chem Phys 125:074713PubMedGoogle Scholar
  111. 111.
    Whitfield TW, Martyna GJ (2006) Chem Phys Lett 424:409Google Scholar
  112. 112.
    Jones A, Thompson A, Crain J, Müser MH, Martyna GJ (2009) Phys Rev B 79:144119Google Scholar
  113. 113.
    Szalewicz K, Bukowski R, Jeziorski B (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first fourty years, Chap 33. Elsevier, Amsterdam, pp 919–962Google Scholar
  114. 114.
    Jankiewicz W, Podeszwa R, Witek HA (2018) J Chem Theory Comput 14:5079PubMedGoogle Scholar
  115. 115.
    Dunning TH Jr (1989) J Chem Phys 90:1007Google Scholar
  116. 116.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796Google Scholar
  117. 117.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358Google Scholar
  118. 118.
    Williams HL, Mas EM, Szalewicz K, Jeziorski B (1995) J Chem Phys 103:7374Google Scholar
  119. 119.
    Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV et al. (2006) Phys Chem Chem Phys 8:3172PubMedGoogle Scholar
  120. 120.
    Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73Google Scholar
  121. 121.
    Rohrdanz MA, Martins KM, Herbert JM (2009) J Chem Phys 130:054112PubMedGoogle Scholar
  122. 122.
    Modrzejewski M, Chalasinski G, Szczesniak MM (2014) J Chem Theory Comput 10:4297PubMedGoogle Scholar
  123. 123.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJ, Wang D, Nieplocha J, Apra E, Windus TL et al (2010) Comput Phys Commun 181:1477Google Scholar
  124. 124.
    Perdew JP, Yue W (1986) Phys Rev B 33:8800Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of DelawareNewarkUSA

Personalised recommendations