Theoretical study of transesterification of diethyl carbonate with methanol catalyzed by base and Lewis acid

  • Alexander Y. Samuilov
  • Yakov D. SamuilovEmail author
Regular Article


A detailed study of mechanism of the reaction transesterification of diethyl carbonate with methanol as a model reaction of chemical recycling of polycarbonate waste has been investigated theoretically. Thermodynamics parameters have been described at B3LYP/6-311++G(df,p) level. The calculations show that in the case on non-catalytic reaction the presence of hydrogen-bonded methanol cluster can noticeably reduce the energy barrier. This complex possesses higher electron–donor and acid–base properties than free alcohol molecules, thus increasing the activity of complexes in the reaction. The calculations show that the catalysis by sodium methylate is much more preferable than the catalysis with zinc acetate.


Dimethyl carbonate Polycarbonates Transesterification Catalysis Recycling Hydrogen bonds 



  1. 1.
    Elias F, Thibault C (2015) Room temperature organocatalyzed reductive depolymerization of waste polyethers, polyesters, and polycarbonates. Chemsuschem 8:980–984. CrossRefGoogle Scholar
  2. 2.
    Ignatyev AI, Thielemans W, Vander Beke B (2014) Recycling of polymers: a review. Chemsuschem 7:1579–1593. CrossRefPubMedGoogle Scholar
  3. 3.
    Antonakou EV, Achilias DS (2013) Recent advances in polycarbonate recycling: a review of degradation methods and their mechanisms. Waste Biomass Valorization 4:9–21. CrossRefGoogle Scholar
  4. 4.
    Achilias DS, Antonakou EV, Koutsokosta E, Lappas AA (2009) Chemical recycling of polymers from waste electric and electronic equipment. J Appl Polym Sci 114:212–221. CrossRefGoogle Scholar
  5. 5.
    Méndez-Liñán L, López-Garzón FJ, Domingo-García M, Pérez-Mendoza M (2010) Carbon adsorbents from polycarbonate pyrolysis char residue: hydrogen and methane storage capacities. Energy Fuels 24:3394–3400. CrossRefGoogle Scholar
  6. 6.
    Chiu S-J, Chen S-H, Tsai C-T (2006) Effect of metal chlorides on thermal degradation of (waste) polycarbonate. Waste Manag 26:252–259. CrossRefPubMedGoogle Scholar
  7. 7.
    Pan Z, Chou I-M, Burruss RC (2009) Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy. Green Chem 11:1105–1107. CrossRefGoogle Scholar
  8. 8.
    Arai R, Zenda K, Hatakeyama K et al (2010) Reaction kinetics of hydrothermal depolymerization of poly(ethylene naphthalate), poly(ethylene terephthalate), and polycarbonate with aqueous ammonia solution. Chem Eng Sci 65:36–41. CrossRefGoogle Scholar
  9. 9.
    Watanabe M, Matsuo Y, Matsushita T et al (2009) Chemical recycling of polycarbonate in high pressure high temperature steam at 573 K. Polym Degrad Stab 94:2157–2162. CrossRefGoogle Scholar
  10. 10.
    Pan Z, Hu Z, Shi Y et al (2014) Depolymerization of polycarbonate with catalyst in hot compressed water in fused silica capillary and autoclave reactors. RSC Adv 4:19992–19998. CrossRefGoogle Scholar
  11. 11.
    Huang Y, Liu S, Pan Z (2011) Effects of plastic additives on depolymerization of polycarbonate in sub-critical water. Polym Degrad Stab 96:1405–1410. CrossRefGoogle Scholar
  12. 12.
    Liu F-S, Li Z, Yu S-T et al (2009) Methanolysis and hydrolysis of polycarbonate under moderate conditions. J Polym Environ 17:208. CrossRefGoogle Scholar
  13. 13.
    Grause G, Tsukada N, Hall WJ et al (2010) High-value products from the catalytic hydrolysis of polycarbonate waste. Polym J 42:438CrossRefGoogle Scholar
  14. 14.
    Grause G, Sugawara K, Mizoguchi T, Yoshioka T (2009) Pyrolytic hydrolysis of polycarbonate in the presence of earth-alkali oxides and hydroxides. Polym Degrad Stab 94:1119–1124. CrossRefGoogle Scholar
  15. 15.
    Yoshioka T, Sugawara K, Mizoguchi T, Okuwaki A (2005) Chemical recycling of polycarbonate to raw materials by thermal decomposition with calcium hydroxide/steam. Chem Lett 34:282–283. CrossRefGoogle Scholar
  16. 16.
    Tagaya H, Katoh K, Kadokawa J, Chiba K (1999) Decomposition of polycarbonate in subcritical and supercritical water. Polym Degrad Stab 64:289–292. CrossRefGoogle Scholar
  17. 17.
    Hatakeyama K, Kojima T, Funazukuri T (2014) Chemical recycling of polycarbonate in dilute aqueous ammonia solution under hydrothermal conditions. J Mater Cycles Waste Manag 16:124–130. CrossRefGoogle Scholar
  18. 18.
    Hata S, Goto H, Yamada E, Oku A (2002) Chemical conversion of poly(carbonate) to 1,3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer (Guildf) 43:2109–2116. CrossRefGoogle Scholar
  19. 19.
    Sohei H, Hiroko G, Saki T, Akira O (2003) Viable utilization of polycarbonate as a phosgene equivalent illustrated by reactions with alkanedithiols, mercaptoethanol, aminoethanethiol, and aminoethanol: a solution for the issue of carbon resource conservation. J Appl Polym Sci 90:2959–2968. CrossRefGoogle Scholar
  20. 20.
    Hu L-C, Oku A, Yamada E (1998) Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer (Guildf) 39:3841–3845. CrossRefGoogle Scholar
  21. 21.
    Liu F, Li Z, Yu S et al (2010) Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids. J Hazard Mater 174:872–875. CrossRefPubMedGoogle Scholar
  22. 22.
    Liu F, Li L, Yu S et al (2011) Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac]. J Hazard Mater 189:249–254. CrossRefPubMedGoogle Scholar
  23. 23.
    Jie H, Ke H, Qing Z et al (2006) Study on depolymerization of polycarbonate in supercritical ethanol. Polym Degrad Stab 91:2307–2314. CrossRefGoogle Scholar
  24. 24.
    Piñero R, García J, Cocero MJ (2005) Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol–water mixtures. Green Chem 7:380–387. CrossRefGoogle Scholar
  25. 25.
    Rosi L, Bartoli M, Undri A et al (2015) Synthesis of dianols or BPA through catalytic hydrolyisis/glycolysis of waste polycarbonates using a microwave heating. J Mol Catal A Chem 408:278–286. CrossRefGoogle Scholar
  26. 26.
    Oku A, Tanaka S, Hata S (2000) Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers. Polymer (Guildf) 41:6749–6753. CrossRefGoogle Scholar
  27. 27.
    Lin C-H, Lin H-Y, Liao W-Z, Dai SA (2007) Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials. Green Chem 9:38–43. CrossRefGoogle Scholar
  28. 28.
    Kim D, Kim B, Cho Y et al (2009) Kinetics of polycarbonate glycolysis in ethylene glycol. Ind Eng Chem Res 48:685–691. CrossRefGoogle Scholar
  29. 29.
    Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160. CrossRefGoogle Scholar
  30. 30.
    Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J Chem Phys 97:9173–9177. CrossRefGoogle Scholar
  31. 31.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. CrossRefGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, revision A.1. Gaussian Inc, WallingfordGoogle Scholar
  33. 33.
    Carroll FA (2010) Perspectives on structure and mechanism in organic chemistry. Wiley, HobokenGoogle Scholar
  34. 34.
    Maksić ZB, Kovačević B, Vianello R (2012) Advances in determining the absolute proton affinities of neutral organic molecules in the gas phase and their interpretation: a theoretical account. Chem Rev 112:5240–5270. CrossRefPubMedGoogle Scholar
  35. 35.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. CrossRefPubMedGoogle Scholar
  36. 36.
    Lin K, Zhou X, Luo Y, Liu S (2010) The microscopic structure of liquid methanol from raman spectroscopy. J Phys Chem B 114:3567–3573. CrossRefPubMedGoogle Scholar
  37. 37.
    Kostko O, Belau L, Wilson KR, Ahmed M (2008) Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol − water clusters. J Phys Chem A 112:9555–9562. CrossRefPubMedGoogle Scholar
  38. 38.
    Shi YJ, Consta S, Das AK et al (2002) A 118 nm vacuum ultraviolet laser/time-of-flight mass spectroscopic study of methanol and ethanol clusters in the vapor phase. J Chem Phys 116:6990–6999. CrossRefGoogle Scholar
  39. 39.
    Samuilov AY, Balabanova FB, Samuilov YD (2014) Computational study of the reaction of dimethyl carbonate with methyl amine. Comput Theor Chem 1049:7–12. CrossRefGoogle Scholar
  40. 40.
    Taguchi M, Ishikawa Y, Kataoka S et al (2016) CeO2 nanocatalysts for the chemical recycling of polycarbonate. Catal Commun 84:93–97. CrossRefGoogle Scholar
  41. 41.
    Patai S (1971) The chemistry of the hydroxyl group. Wiley, LondonGoogle Scholar
  42. 42.
    Granjo JFO, Oliveira NMC (2016) Process simulation and techno-economic analysis of the production of sodium methoxide. Ind Eng Chem Res 55:156–167. CrossRefGoogle Scholar
  43. 43.
    Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 70:249–253. CrossRefGoogle Scholar
  44. 44.
    Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268. CrossRefGoogle Scholar
  45. 45.
    Shakourian-Fard M, Kamath G, Smith K et al (2015) Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: insights from first-principles calculations. J Phys Chem C 119:22747–22759. CrossRefGoogle Scholar
  46. 46.
    Cresce AV, Russell SM, Borodin O et al (2017) Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys Chem Chem Phys 19:574–586. CrossRefGoogle Scholar
  47. 47.
    Snider BB, Ron E (1985) The mechanism of Lewis acid catalyzed ene reactions. J Am Chem Soc 107:8160–8164. CrossRefGoogle Scholar
  48. 48.
    Chandra Shekhar A, Ravi Kumar A, Sathaiah G et al (2009) Facile N-formylation of amines using Lewis acids as novel catalysts. Tetrahedron Lett 50:7099–7101. CrossRefGoogle Scholar
  49. 49.
    Ilham Z, Saka S (2016) Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. Springerplus 5:923. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Haßkerl D, Subramanian S, Markert S et al (2018) Multi-rate state estimation applied to a pilot-scale reactive distillation process. Chem Eng Sci 185:256–281. CrossRefGoogle Scholar
  51. 51.
    Zheng L, Cai W, Zhang X, Wang Y (2017) Design and control of reactive dividing-wall column for the synthesis of diethyl carbonate. Chem Eng Process Process Intensif 111:127–140. CrossRefGoogle Scholar
  52. 52.
    Keller T, Holtbruegge J, Górak A (2012) Transesterification of dimethyl carbonate with ethanol in a pilot-scale reactive distillation column. Chem Eng J 180:309–322. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan National Research Technological UniversityRepublic of TatarstanRussian Federation

Personalised recommendations