Advertisement

Giant values obtained for first hyperpolarizabilities of methyl orange: a DFT investigation

  • Ângela C. M. Pimenta
  • T. Andrade-Filho
  • Vinícius Manzoni
  • Jordan Del Nero
  • Rodrigo GesterEmail author
Regular Article
  • 64 Downloads

Abstract

Advances in photonics and optoelectronics depend on proposing new materials with well-defined nonlinear optics properties. Based on the foundations of density functional theory, this work presents a systematic investigation of linear and nonlinear optical properties of methyl orange, a well-known azo dye. Structural changes from alkaline to acidic structures drastically boost all investigated properties. For instance, the material dipole polarizability starts from an isotropic condition (\(\alpha _{\mathrm{iso}}>\varDelta \alpha \)) to an anisotropic behavior (\(\alpha _{\mathrm{iso}}<\varDelta \alpha \)). The first hyperpolarizabilities are also strongly tuned varying from 18.9 \(\times\, 10^{-30}\) to 171.7 \(\times\, 10^{-30}\) esu. A careful analysis of frontier molecular orbitals indicates proper wide-bandgap semiconductor energy gap (3.22 eV) and associates the highest hyperpolarizabilities to the lowest energy gap, which means semiconductor molecules with intense nonlinear optical activity.

Keywords

Dipole moment Dipole polarizability First hyperpolarizability Azo dyes DFT 

Notes

Acknowledgements

The authors are grateful to Brazilian funding agencies [CAPES and CNPq under Project Universal (Grant 427527/2016-3)], which have suffering severe cuts in their budget, compromising the national science. RMG thanks to Raiane Sodré by scientific highlights.

References

  1. 1.
    Zou LY, Zhang ZL, Ren AM, Ran XQ, Feng JK (2010) Theor Chem Acc 126:361CrossRefGoogle Scholar
  2. 2.
    Jin R, Ahmad I (2015) Theor Chem Acc 134:89CrossRefGoogle Scholar
  3. 3.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  4. 4.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  5. 5.
    Castellanos Aguila JE, Trejo-Duran M (2018) J Mol Liq 269:833CrossRefGoogle Scholar
  6. 6.
    Hinchliffe A, Soscún Machado HJ (1993) J Mol Struct 300:1CrossRefGoogle Scholar
  7. 7.
    Hinchliffe A, Mb HJS (1994) J Mol Struct 304:109CrossRefGoogle Scholar
  8. 8.
    Hinchliffe A, Soscún Machado HJ (1994) J Mol Struct 312:57CrossRefGoogle Scholar
  9. 9.
    Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA (2018) J Cell Biochem 120:1667–1678CrossRefGoogle Scholar
  10. 10.
    Yazdanbakhsh M, Yousefi H, Mamaghani M, Moradi E, Rassa M, Pouramir H, Bagheri M (2012) J Mol Liq 169:21CrossRefGoogle Scholar
  11. 11.
    El-Ghamry HA, Fathalla SK, Gaber M (2018) Appl Organomet Chem 32:e4136CrossRefGoogle Scholar
  12. 12.
    Ono M, Wada Y, Wu Y, Nemori R, Jinbo Y, Wang H, Lo KM, Yamaguchi N, Brunkhorst B, Otomo H, Wesolowski J, Way JC, Itoh I, Gillies S, Chen LB (1997) Nat Biotechnol 15:343CrossRefGoogle Scholar
  13. 13.
    Poli G, Vicenzi E (2001) IDrugs Investig Drugs J 4:1293Google Scholar
  14. 14.
    Zhang Y, Gan Q, Wang S, Yang G (2012) J Inorg Organomet Polym Mater 22:48CrossRefGoogle Scholar
  15. 15.
    Tathe AB, Sekar N (2016) J Fluoresc 26:1279CrossRefGoogle Scholar
  16. 16.
    Bouchouit M, Elkouari Y, Messaadia L, Bouraiou A, Arroudj S, Bouacida S, Taboukhat S, Bouchouit K (2016) Opt Quantum Electron 48:178CrossRefGoogle Scholar
  17. 17.
    Del Nero J, de Araujo RE, Gomes ASL, de Melo CP (2005) J Chem Phys 122:104506CrossRefGoogle Scholar
  18. 18.
    Costa SC, Gester RM, Guimarães JR, Amazonas JG, Nero JD, Silva SB, Galembeck A (2008) Opt Mater 30:1432CrossRefGoogle Scholar
  19. 19.
    Ong SA, Min OM, Ho LN, Wong YS (2013) Environ Sci Pollut Res 20:3405CrossRefGoogle Scholar
  20. 20.
    Guo H, Yang F, Yuan J, Bai X (2015) J Iran Chem Soc 12:197CrossRefGoogle Scholar
  21. 21.
    Ong SA, Min OM, Ho LN, Wong YS (2012) Water Air Soil Pollut 223:5483CrossRefGoogle Scholar
  22. 22.
    Kanagaraj J, Velan TS, Mandal AB (2011) Clean Technol Environ Policy 14:565CrossRefGoogle Scholar
  23. 23.
    Lau Y, Wong Y, Teng T, Morad N, Rafatullah M, Ong S (2014) Chem Eng J 246:383CrossRefGoogle Scholar
  24. 24.
    Shahab S, Hajikolaee FH, Filippovich L, Darroudi M, Loiko VA, Kumar R, Borzehandani MY (2016) Dyes Pigment 129:9CrossRefGoogle Scholar
  25. 25.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275CrossRefGoogle Scholar
  27. 27.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  28. 28.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639CrossRefGoogle Scholar
  29. 29.
    Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016CrossRefGoogle Scholar
  30. 30.
    Kleinman DA (1962) Phys Rev 126:1977CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2004) Gaussian 03 revision D01. Gaussian Inc., WallingfordGoogle Scholar
  32. 32.
    Maroulis G (2003) J Comput Chem 24:443CrossRefGoogle Scholar
  33. 33.
    Maroulis G (2008) J Chem Phys 129:044314CrossRefGoogle Scholar
  34. 34.
    Karamanis P, Maroulis G (2011) J Phys Org Chem 24:588CrossRefGoogle Scholar
  35. 35.
    Quertinmont J, Champagne B, Castet F, Hidalgo Cardenuto M (2015) J Phys Chem A 119:5496CrossRefGoogle Scholar
  36. 36.
    Cardenuto MH, Champagne B (2015) Phys Chem Chem Phys 17:23634CrossRefGoogle Scholar
  37. 37.
    Maroulis G (1999) J Chem Phys 111:583CrossRefGoogle Scholar
  38. 38.
    Maroulis G, Xenides D, Hohm U, Loose A (2001) J Chem Phys 115:7957CrossRefGoogle Scholar
  39. 39.
    Karamanis P, Maroulis G (2003) J Mol Struct THEOCHEM 621:157CrossRefGoogle Scholar
  40. 40.
    Karamanis P, Maroulis G (2003) Chem Phys Lett 376:403CrossRefGoogle Scholar
  41. 41.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195CrossRefGoogle Scholar
  42. 42.
    Chakraborti H (2016) Spectrochim Acta A Mol Biomol Spectrosc 153:226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ângela C. M. Pimenta
    • 1
  • T. Andrade-Filho
    • 2
  • Vinícius Manzoni
    • 3
  • Jordan Del Nero
    • 4
  • Rodrigo Gester
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em QuímicaUniversidade Federal do Sul e Sudeste do ParáMarabáBrazil
  2. 2.Faculdade de FísicaUniversidade Federal do Sul e Sudeste do ParáMarabáBrazil
  3. 3.Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil
  4. 4.Faculdade de FísicaUniversidade Federal do ParáBelémBrazil

Personalised recommendations