Advertisement

Molecular mechanics of caffeic acid in food profilin allergens

  • Haruna L. Barazorda-CcahuanaEmail author
  • Diego E. Valencia
  • Badhin Gómez
Regular Article
  • 60 Downloads
Part of the following topical collections:
  1. CHITEL 2017 - Paris - France

Abstract

Vegetable profilins are considered potent allergens for their cross-reactivity as a result of the high sequence identity. Nowadays an attractive attention is focused to find new ligands to inhibit the active site of allergenic profilins. Some studies have shown that caffeic acid may have a certain inhibitory effect on some allergens. For this reason, we studied caffeic acid as an important ligand and its interaction between seven vegetable profilins. We applied molecular dynamic simulations methods and binding free energy analysis by MM–PBSA. We found that caffeic acid had a favorable behavior, and their coupling was mediated by hydrophobic interactions. Furthermore, the analysis of epitopes showed an important contribution of the secondary structure after docking simulations.

Keywords

Profilin Allergy Molecular mechanics Caffeic acid 

Notes

Acknowledgements

This work has been supported partially by funds of the Universidad Católica de Santa María (Resolution No. 20179) and by Fondo Nacional de Desarrollo Científico y Tecnológico—FONDECYT Grant No. 138-2015-Perú.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

214_2018_2404_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2391 kb)

References

  1. 1.
    Sicherer SH, Allen K, Lack G, Taylor SL, Donovan SM, Oria M (2017) Critical issues in food allergy: a national academies consensus report. Pediatrics 140(2):e20170194PubMedCrossRefGoogle Scholar
  2. 2.
    Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133(2):291–307. e295PubMedCrossRefGoogle Scholar
  3. 3.
    Koeberl M, Clarke D, Lopata AL (2014) Next generation of food allergen quantification using mass spectrometric systems. J Proteome Res 13(8):3499–3509PubMedCrossRefGoogle Scholar
  4. 4.
    Valenta R, Duchêne M, Vrtala S, Valent P, Sillaber C, Ferreira F, Tejkl M, Hirschwehr R, Ebner C, Kraft D (1992) Profilin, a novel plant pan-allergen. Int Arch Allergy Immunol 99(2–4):271–273CrossRefGoogle Scholar
  5. 5.
    Carlsson L, Nyström L-E, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115(3):465–483PubMedCrossRefGoogle Scholar
  6. 6.
    Carlsson L, Nyström L-E, Lindberg U, Kannan K, Cid-Dresdner H, Lövgren S, Jörnvall H (1976) Crystallization of a non-muscle actin. J Mol Biol 105(3):353–366PubMedCrossRefGoogle Scholar
  7. 7.
    Aalberse R, Akkerdaas J, Van Ree R (2001) Cross-reactivity of IgE antibodies to allergens. Allergy 56(6):478–490PubMedCrossRefGoogle Scholar
  8. 8.
    Creighton TE (1993) Proteins: structures and molecular properties. Macmillan, New YorkGoogle Scholar
  9. 9.
    Chung S-Y, Reed S (2014) Reducing food allergy: is there promise for food applications? Curr Pharm Des 20(6):924–930PubMedCrossRefGoogle Scholar
  10. 10.
    Cuadrado C, Cabanillas B, Pedrosa MM, Varela A, Guillamón E, Muzquiz M, Crespo JF, Rodriguez J, Burbano C (2009) Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Mol Nutr Food Res 53(11):1462–1468PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar S, Verma AK, Das M, Dwivedi PD (2012) Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol 13(4):432–439PubMedCrossRefGoogle Scholar
  12. 12.
    Koppelman SJ, Hefle SL, Taylor SL, De Jong GA (2010) Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: a comparative in vitro study and partial characterization of digestion-resistant peptides. Mol Nutr Food Res 54(12):1711–1721PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson PE, Van der Plancken I, Balasa A, Husband FA, Grauwet T, Hendrickx M, Knorr D, Mills E, Mackie AR (2010) High pressure, thermal and pulsed electric-field-induced structural changes in selected food allergens. Mol Nutr Food Res 54(12):1701–1710PubMedCrossRefGoogle Scholar
  14. 14.
    Chung S-Y, Mattison CP, Reed S, Wasserman RL, Desormeaux WA (2015) Treatment with oleic acid reduces IgE binding to peanut and cashew allergens. Food Chem 180:295–300PubMedCrossRefGoogle Scholar
  15. 15.
    Chung S-Y, Kato Y, Champagne ET (2005) Polyphenol oxidase/caffeic acid may reduce the allergenic properties of peanut allergens. J Sci Food Agric 85(15):2631–2637.  https://doi.org/10.1002/jsfa.2302 CrossRefGoogle Scholar
  16. 16.
    Kang H, Wang Z, Zhang W, Li J, Zhang S (2016) Physico-chemical properties improvement of soy protein isolate films through caffeic acid incorporation and tri-functional aziridine hybridization. Food Hydrocoll 61:923–932.  https://doi.org/10.1016/j.foodhyd.2016.07.009 CrossRefGoogle Scholar
  17. 17.
    Ozdal T, Capanoglu E, Altay F (2013) A review on protein–phenolic interactions and associated changes. Food Res Int 51(2):954–970.  https://doi.org/10.1016/j.foodres.2013.02.009 CrossRefGoogle Scholar
  18. 18.
    Gruber P, Vieths S, Wangorsch A, Nerkamp J, Hofmann T (2004) Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium). J Agric Food Chem 52(12):4002–4007PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou Y, Wang J-S, Yang X-J, Lin D-H, Gao Y-F, Su Y-J, Yang S, Zhang Y-J, Zheng J-J (2013) Peanut allergy, allergen composition, and methods of reducing allergenicity: a review. Int J Food Sci 2013:909140PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chung S-Y, Reed S (2012) Removing peanut allergens by tannic acid. Food Chem 134(3):1468–1473PubMedCrossRefGoogle Scholar
  21. 21.
    Cherkaoui S, Ben-Shoshan M, Alizadehfar R, Asai Y, Chan E, Cheuk S, Shand G, St-Pierre Y, Harada L, Allen M (2015) Accidental exposures to peanut in a large cohort of Canadian children with peanut allergy. Clin Transl Allergy 5(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Domínguez-Soria VD, Moreno RF, Gamboa GU, Goursot A, Köster AM, Reveles JU (2012) DeMon2k. Wiley Interdiscip Rev Comput Mol Sci 2(4):548–555CrossRefGoogle Scholar
  23. 23.
    Yang W, Ayers PW (2003) Density-functional theory. Computational medicinal chemistry for drug discovery. CRC Press, Boca Raton, pp 103–132Google Scholar
  24. 24.
    Koster AM, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida ME, Carmona-Espindola J, Dominguez V, Flores-Moreno R, Gamboa RU, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo JM, Mejia-Rodriguez D, Reveles JU, Vasquez-Perez J, Vela A, Zuniga-Gutierrez B, Salahub DR (2016) deMon2k, version 4. The deMon developers, Cinvestav, Mexico CityGoogle Scholar
  25. 25.
    Webb B, Sali A (2017) Protein structure modeling with MODELLER. Functional genomics. Springer, Berlin, pp 39–54CrossRefGoogle Scholar
  26. 26.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25CrossRefGoogle Scholar
  27. 27.
    Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33(Suppl_2):W363–W367PubMedCrossRefGoogle Scholar
  28. 28.
    Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux A-C (2015) PockDrug-server: a new web server for predicting pocket druggability on holo and apo proteins. Nucl Acids Res 43(W1):W436–W442PubMedCrossRefGoogle Scholar
  29. 29.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sankian M, Varasteh A, Pazouki N, Mahmoudi M (2005) Sequence homology: a poor predictive value for profilins cross-reactivity. Clin Mol Allergy 3(1):13PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Larsson P, Wallner B, Lindahl E, Elofsson A (2008) Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci 17(6):990–1002PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5(1):33–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haruna L. Barazorda-Ccahuana
    • 1
    Email author
  • Diego E. Valencia
    • 1
  • Badhin Gómez
    • 1
  1. 1.Centro de Investigación en Ingeniería Molecular, Vicerrectorado de InvestigaciónUniversidad Católica de Santa MaríaArequipaPeru

Personalised recommendations