Advertisement

Instability in pyramidal–tetrahedral structure including elements from group 14 induced by pseudo-Jahn–Teller effect

  • Ali Reza IlkhaniEmail author
  • Zhibo Wang
Regular Article
  • 46 Downloads

Abstract

The pseudo-Jahn–Teller effect (PJTE) of the pyramidal–tetrahedral A42− (A = C, Si, Ge, Sn) dianion analogues is investigated by quantum chemical calculations. The adiabatic potential energy surface cross sections obtained from ab initio calculation of the A42− analogues show instability for a degenerate E ground state. Thus, symmetry breaking phenomena induced by the PJTE occur in the series, and the unstable pyramidal–tetrahedral configuration with Td symmetry distorts to the equilibrium geometry structure (lower C2 symmetry) in all considered dianions. Additionally, the (E(1) + A1 + E(2)) ⊗ e problem is formulated for the analogues with the APES cross sections used in order to estimate the coupling constants by fitting the energies acquired from the PJTE equations. To restore the pyramidal–tetrahedral structure with Td symmetry and quenching the PJTE in the series, the PJTE in A42− analogues was suppressed through (1) adding two electrons to the A42− series and (2) either doping the A42− analogues with an atom from group 14 or trapping He2+ and Ne2+ inside the Si42− cage.

Keywords

PJTE Tetrahedral unstable configuration Pyramidane dianion Restoring Td symmetry 3D distortion 

Notes

Acknowledgements

The corresponding author thanks the Yazd Branch, Islamic Azad University, for their financial support of this research. This work has been enabled in part with support from Westgrid (www.westgrid.ca) and Compute/Calcul Canada (www.computecanada.ca).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest in this research.

References

  1. 1.
    Maier G (1988) Angew Chem Int Ed Engl 27:309–332CrossRefGoogle Scholar
  2. 2.
    Maier G (1991) Pure Appl Chem 63:275–282CrossRefGoogle Scholar
  3. 3.
    Maier G, Pfriem S, Schafer U, Matusch R (1978) Angew Chem Int Ed Engl 17:520–530CrossRefGoogle Scholar
  4. 4.
    Beesley RM, Thorpe JF (1913) Proc Chem Soc 29:346–349Google Scholar
  5. 5.
    Beesley RM, Thorpe JF (1920) J Chem Soc 117:591–595CrossRefGoogle Scholar
  6. 6.
    Maier G, Neudert J, Wolf O, Pappusch D, Sekiguchi A, Tanaka M, Matsuo T (2002) J Am Chem Soc 124:13819–13826CrossRefGoogle Scholar
  7. 7.
    Kliche G, Schwarz M, von Schnering HG (1987) Angew Chem Int Ed Engl 26:349–351CrossRefGoogle Scholar
  8. 8.
    Wiberg N, Hochmuth W, Noth H, Appel A, Schmidt-Amelunxen M (1996) Angew Chem Int Ed Engl 35:1333–1336CrossRefGoogle Scholar
  9. 9.
    Ichinohe M, Toyoshima M, Kinjo R, Sekiguchi A (2003) J Am Chem Soc 125:13328–13329CrossRefGoogle Scholar
  10. 10.
    van Schnering HG, Schwarz M, Nesper R (1986) Angew Chem 98:558–561CrossRefGoogle Scholar
  11. 11.
    Schulman JM, Venanzi TJ (1974) J Am Chem Soc 96:4739–4746CrossRefGoogle Scholar
  12. 12.
    Clabo DA, Schaefer HF (1986) J Am Chem Soc 108:4344–4346CrossRefGoogle Scholar
  13. 13.
    Sudlow K, Woolf AA (1995) J Fluor Chem 75:55–60CrossRefGoogle Scholar
  14. 14.
    Hrouda V, Bally T, Carsky P, Jungwirth P (1997) J Phys Chem A 101:3918–3924CrossRefGoogle Scholar
  15. 15.
    Kozuch S, Hrovat DA, Borden WT (2013) J Am Chem Soc 135:19282–19291CrossRefGoogle Scholar
  16. 16.
    Bersuker IB (2006) The Jahn–Teller effect. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Bersuker IB (2013) Chem Rev 113:1351–1390CrossRefGoogle Scholar
  18. 18.
    Liu Y, Bersuker IB, Garcia-Fernandez P, Boggs JE (2012) J Phys Chem A 116:7564–7570CrossRefGoogle Scholar
  19. 19.
    Liu Y, Bersuker IB, Boggs JE (2013) Chem Phys 417:26–29CrossRefGoogle Scholar
  20. 20.
    Hermoso W, Ilkhani AR, Bersuker IB (2014) Comput Theor Chem 1049:109–114CrossRefGoogle Scholar
  21. 21.
    Ilkhani AR, Monajjemi M (2015) Comput Theor Chem 1074:19–25CrossRefGoogle Scholar
  22. 22.
    Ilkhani AR, Hermoso W, Bersuker IB (2015) Chem Phys 460:75–82CrossRefGoogle Scholar
  23. 23.
    Ilkhani AR (2015) J Theor Comput Chem 6:1550045CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya K, Surendran A, Chowdhury C, Datta A (2016) Phys Chem Chem Phys 18:31160–31167CrossRefGoogle Scholar
  25. 25.
    Gorinchoy NN, Bersuker IB (2017) J Phys Con Series 833:012010CrossRefGoogle Scholar
  26. 26.
    Ilkhani AR (2017) Russ J Phys Chem A 91:1743–1751CrossRefGoogle Scholar
  27. 27.
    Bersuker IB (2017) FlatChem 6:11–27CrossRefGoogle Scholar
  28. 28.
    Ilkhani AR (2017) Quim Nova 40:491–495Google Scholar
  29. 29.
    Jose D, Datta A (2011) Phys Chem Chem Phys 13:7304–7311CrossRefGoogle Scholar
  30. 30.
    Chowdhury C, Jahiruddin S, Datta A (2016) J Phys Chem Lett 7:1288–1297CrossRefGoogle Scholar
  31. 31.
    Ghosh M, Datta A (2018) Bull Mater Sci 41:117CrossRefGoogle Scholar
  32. 32.
    Jose D, Datta A (2012) J Phys Chem C 116:24639–24648CrossRefGoogle Scholar
  33. 33.
    Ilkhani AR (2015) J Mol Struct 1098:21–25CrossRefGoogle Scholar
  34. 34.
    Ilkhani AR, Gorinchoy NN, Bersuker IB (2015) Chem Phys 460:106–110CrossRefGoogle Scholar
  35. 35.
    Pratik SMd, Datta A (2015) J Phys Chem C 119:15770–15776CrossRefGoogle Scholar
  36. 36.
    Polly R, Werner HJ, Manby FR, Knowles PJ (2004) Mol Phys 102:2311–2321CrossRefGoogle Scholar
  37. 37.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  38. 38.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  39. 39.
    Wilson AK, Woon DE, Peterson KA (1999) J Chem Phys 110:7667–7676CrossRefGoogle Scholar
  40. 40.
    Dolg M (1996) J Chem Phys 104:4061–4067CrossRefGoogle Scholar
  41. 41.
    Dolg M (1996) Chem Phys Lett 250:75–79CrossRefGoogle Scholar
  42. 42.
    Peterson KA (2003) J Chem Phys 119:11099–11113CrossRefGoogle Scholar
  43. 43.
    Werner HJ, Meyer W (1980) J Chem Phys 73:2342–2356CrossRefGoogle Scholar
  44. 44.
    Werner HJ, Meyer W (1981) J Chem Phys 74:5794–5801CrossRefGoogle Scholar
  45. 45.
    Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053–5063CrossRefGoogle Scholar
  46. 46.
    Werner HJ, Knowles PJ, Manby FR, Schutz M (2015) MOLPRO version 2015.1.22, a package of ab initio programs. http://www.molpro.net. Accessed 30 June 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations