Advertisement

A first-principles study of half-Heusler intermetallic compound MgAgAs with 2D-TiC/2D-Mo2TiC composite material

  • Ephraim Muriithi Kiarii
  • Krishna Kuben Govender
  • Messai Adenew Mamo
  • Penny Poomani Govender
Regular Article

Abstract

The world reliance on non-renewable and depleted energy resources has made the search for renewable and sustainable energy more significant. However, a theoretical study is necessary to give a more elaborate investigation of the electronic and optical properties since the role of the heterostructures is still deficient. Furthermore, no first-principles studies have been reported on 2D thermoelectric heterostructures comprising of MgAgAs, 2D-TiC and 2D-Mo2TiC material. Our calculated electronic results show no bandgap induction in the heterostructures compared to pure intermetallic MgAgAs, 2D-TiC and 2D-Mo2TiC material, which favours the separation and transfer of charge carriers and visible-light-driven activity. Based on the analysis of the electronic properties, band structure, projected density of state and spin-polarised contributions from the spin-down and spin-up eigenstates, the Mo2TiC–MgAgAs–Mo2TiC layer was found to have improved conductivity at the infrared region. This makes the electrons move easily from the surface of the thermoelectric material once generated and stored in the heterostructures. The proposed theoretical design offers a new way for the effective and large-scale fabrication of 2D-based thermoelectric materials for application in solar energy conversion and storage.

Keywords

Density functional theory Electronic Intermetallic Optical Thermoelectric 

Notes

Acknowledgements

The authors would like to acknowledge the financial contributions from the Faculty of Science: University of Johannesburg, South Africa: Centre for Nanomaterials Science Research, Department of Applied Chemistry and the National Research Foundation (TTK14052167682). The authors are also grateful to the Centre for High-Performance Computing (CHPC) for computational resources provided.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zebarjadi M, Esfarjani K, Dresselhaus M, Ren Z, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5(1):5147–5162CrossRefGoogle Scholar
  2. 2.
    Poon GJ (2001) Electronic and thermoelectric properties of half-Heusler alloys. Semicond Semimetals 70:37–75CrossRefGoogle Scholar
  3. 3.
    Nolas G, Morelli D, Tritt TM (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29(1):89–116CrossRefGoogle Scholar
  4. 4.
    Jeitschko W (1970) Transition metal stannides with MgAgAs and MnCu2Al type structure. Metall Trans 1(11):3159–3162Google Scholar
  5. 5.
    Tobola J, Pierre J, Kaprzyk S, Skolozdra R, Kouacou M (1998) Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration. J Phys Condens Matter 10(5):1013–1032CrossRefGoogle Scholar
  6. 6.
    Uher C, Yang J, Hu S, Morelli D, Meisner G (1999) Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys Rev B 59(13):8615–8621CrossRefGoogle Scholar
  7. 7.
    Hohl H, Ramirez AP, Goldmann C, Ernst G, Wölfing B, Bucher E (1999) Efficient dopants for ZrNiSn-based thermoelectric materials. J Phys Condens Matter 11(7):1697–1709CrossRefGoogle Scholar
  8. 8.
    Bhattacharya S, Pope A, Littleton R IV, Tritt TM, Ponnambalam V, Xia Y, Poon S (2000) Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx. Appl Phys Lett 77(16):2476–2478CrossRefGoogle Scholar
  9. 9.
    Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G, Uher C (2001) Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl Phys Lett 79(25):4165–4167CrossRefGoogle Scholar
  10. 10.
    Sakurada S, Shutoh N (2005) Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds. Appl Phys Lett 86(8):082105CrossRefGoogle Scholar
  11. 11.
    Xia Y, Bhattacharya S, Ponnambalam V, Pope A, Poon S, Tritt T (2000) Thermoelectric properties of semimetallic (Zr, Hf) CoSb half-Heusler phases. J Appl Phys 88(4):1952–1955CrossRefGoogle Scholar
  12. 12.
    Lu C, Miao M, Ma Y (2013) Structural evolution of carbon dioxide under high pressure. J Am Chem Soc 135(38):14167–14171CrossRefPubMedGoogle Scholar
  13. 13.
    Ding L-P, Shao P, Zhang F-H, Lu C, Ding L, Ning SY, Huang XF (2016) Crystal structures, stabilities, electronic properties, and hardness of MoB2: first-principles calculations. Inorg Chem 55(14):7033–7040CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang C, Kuang X, Jin Y, Lu C, Zhou D, Li P, Bao G, Hermann A (2015) Prediction of stable ruthenium silicides from first-principles calculations: stoichiometries, crystal structures, and physical properties. ACS Appl Mater Interfaces 7(48):26776–26782CrossRefPubMedGoogle Scholar
  15. 15.
    Kiarii EM, Govender KK, Ndungu PG, Govender PP (2018) Recent advances in titanium dioxide/graphene photocatalyst materials as potentials of energy generation. Bull Mater Sci 41(3):75CrossRefGoogle Scholar
  16. 16.
    Yang J, Li H, Wu T, Zhang W, Chen L, Yang J (2008) Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv Funct Mater 18(19):2880–2888CrossRefGoogle Scholar
  17. 17.
    He J, Naghavi SS, Hegde VI, Amsler M, Wolverton C (2018) Designing and discovering a new family of semiconducting quaternary Heusler compounds based on the 18-electron rule. Chem Mater.  https://doi.org/10.1021/acs.chemmater.8b01096 CrossRefGoogle Scholar
  18. 18.
    Vahabzadeh N-A, Boochani A, Elahi SM, Akbari H (2018) Structural, half-metallic, optical, and thermoelectric study on the Zr2TiX (X = Al, Ga, Ge, Si) Heuslers: by DFT. Silicon 1–11.  https://doi.org/10.1007/s12633-018-9939-4
  19. 19.
    Mehmood N, Ahmad R (2018) Structural, electronic, magnetic and optical investigations of half-Heusler compounds YZSb (Z = Cr, Mn): FP-LAPW method. J Supercond Novel Magn 31(3):879–888CrossRefGoogle Scholar
  20. 20.
    Ahmad R, Mehmood N (2018) A density functional theory investigations of half-Heusler compounds RhVZ (Z = P, As, Sb). J Supercond Novel Magn 31:1577–1586CrossRefGoogle Scholar
  21. 21.
    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRefPubMedGoogle Scholar
  22. 22.
    Joensen P, Frindt R, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21(4):457–461CrossRefGoogle Scholar
  23. 23.
    De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H (2010) Evidence of graphene-like electronic signature in silicene nanoribbons. Appl Phys Lett 96(26):261905CrossRefGoogle Scholar
  24. 24.
    Wu W, Lu P, Zhang Z, Guo W (2011) Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons. ACS Appl Mater Interfaces 3(12):4787–4795CrossRefPubMedGoogle Scholar
  25. 25.
    Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80(15):155453CrossRefGoogle Scholar
  26. 26.
    Du A, Sanvito S, Smith SC (2012) First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. Phys Rev Lett 108(19):197207CrossRefPubMedGoogle Scholar
  27. 27.
    Novoselov K (2007) Graphene: mind the gap. Nat Mater 6(10):720–721CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Z, Liu X, Yakobson BI, Guo W (2012) Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc 134(47):19326–19329CrossRefPubMedGoogle Scholar
  29. 29.
    Segall MD, Philip JDL, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14(11):2717–2744CrossRefGoogle Scholar
  30. 30.
    Materials Studio Simulation Environment (2016) Release 2016. Accelrys Software Inc, San DiegoGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  32. 32.
    Song J-W, Yamashita K, Hirao K (2011) Communication: a new hybrid exchange correlation functional for band-gap calculations using a short-range Gaussian attenuation (Gaussian–Perdue–Burke–Ernzerhof). J Chem Phys 135(7):071103CrossRefPubMedGoogle Scholar
  33. 33.
    White J, Bird D (1994) Implementation of gradient-corrected exchange-correlation potentials in Car–Parrinello total-energy calculations. Phys Rev B 50(7):4954–4957CrossRefGoogle Scholar
  34. 34.
    Nowotny H, Holub F (1960) Untersuchungen an metallischen Systemen mit Flußspatphasen. Monatsh Chem Verw Teile Anderer Wiss 91(5):877–887CrossRefGoogle Scholar
  35. 35.
    Ordan’yan S (1975) Reactions of rhenium and other refractory metals with some metal-like compounds. Sov Powder Metall 14(2):125–129Google Scholar
  36. 36.
    Chiarotti G (1995) 1.6 Crystal structures and bulk lattice parameters of materials quoted in the volume. In: Chiarotti G (ed) Interaction of charged particles and atoms with surfaces. Springer, Berlin, pp 21–26CrossRefGoogle Scholar
  37. 37.
    Docherty R, Clydesdale G, Roberts K, Bennema P (1991) Application of Bravais–Friedel–Donnay–Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals. J Phys D Appl Phys 24(2):89–99CrossRefGoogle Scholar
  38. 38.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403CrossRefGoogle Scholar
  39. 39.
    Kohout M, Savin A (1997) Influence of core-valence separation of electron localization function. J Comput Chem 18(12):1431–1439CrossRefGoogle Scholar
  40. 40.
    Chesnut D (2001) The use of parameter ratios to characterize the formal order of chemical bonds. Chem Phys 271(1-2):9–16CrossRefGoogle Scholar
  41. 41.
    Mott NF, Jones H (1958) The theory of the properties of metals and alloys. Dover Publications Inc, New YorkGoogle Scholar
  42. 42.
    Nicolaou MC (2009) Thermoelectric figure of merit of degenerate and nondegenerate semiconductors. Northeastern University, BostonGoogle Scholar
  43. 43.
    Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639CrossRefGoogle Scholar
  44. 44.
    Hicks L, Dresselhaus M (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731CrossRefGoogle Scholar
  45. 45.
    Larson P, Mahanti S, Kanatzidis MG (2000) Electronic structure and transport of Bi2Te3 and BaBiTe3. Phys Rev B 61(12):8162–8171CrossRefGoogle Scholar
  46. 46.
    Grundmann M (2010) Kramers-Kronig relations. In: Rhodes WT, Stanley HE, Needs R (eds) The physics of semiconductors: an introduction including nanophysics and applications. Springer, Berlin, Heidelberg, pp 775–776CrossRefGoogle Scholar
  47. 47.
    Ziman JM (1960) Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press, New YorkGoogle Scholar
  48. 48.
    Collett E (2005) Field guide to polarization, vol 15. SPIE Press, BellinghamCrossRefGoogle Scholar
  49. 49.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefPubMedGoogle Scholar
  50. 50.
    Nolan M, Elliott SD (2006) The p-type conduction mechanism in Cu2O: a first principles study. Phys Chem Chem Phys 8(45):5350–5358CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang H, Liu L, Zhou Z (2012) First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs). RSC Adv 2(24):9224–9229CrossRefGoogle Scholar
  52. 52.
    Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16(38):20382–20386CrossRefPubMedGoogle Scholar
  53. 53.
    Li M, Zhang J, Dang W, Cushing SK, Guo D, Wu N, Yin P (2013) Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping. Phys Chem Chem Phys 15(38):16220–16226CrossRefPubMedGoogle Scholar
  54. 54.
    Dong M, Zhang J, Yu J (2015) Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS. APL Mater 3(10):104404CrossRefGoogle Scholar
  55. 55.
    Zhang H, Liu L, Zhou Z (2012) Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys Chem Chem Phys 14(3):1286–1292CrossRefPubMedGoogle Scholar
  56. 56.
    Opoku F, Govender KK, van Sittert CGCE, Govender PP (2017) Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: from a hybrid density functional study. New J Chem 41:8140–8155CrossRefGoogle Scholar
  57. 57.
    Yuan K, Chen L, Li F, Chen Y (2014) Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. J Mater Chem C 2(6):1018–1027CrossRefGoogle Scholar
  58. 58.
    Louis E, San-Fabián E, Díaz-García MA, Chiappe G, Vergés JA (2017) Are electron affinity and ionization potential intrinsic parameters to predict the electron or hole acceptor character of amorphous molecular materials? J Phys Chem Lett 8(11):2445–2449CrossRefPubMedGoogle Scholar
  59. 59.
    Opoku F, Govender KK, van Sittert CGCE, Govender PP (2018) Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study. Appl Surf Sci 427:487–498CrossRefGoogle Scholar
  60. 60.
    Luo C-Y, Huang W-Q, Hu W, Peng P, Huang G-F (2016) Non-covalent functionalization of WS2 monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Trans 45(34):13383–13391CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Council for Scientific and Industrial Research, Meraka InstituteCentre for High-Performance ComputingCape TownSouth Africa

Personalised recommendations