Unveiling the effects of doping small nickel clusters with a sulfur impurity

  • Abdelaziz ChikhaouiEmail author
  • Mohamed Ziane
  • Slimane Tazibt
  • Said Bouarab
  • Andrés Vega
Regular Article


Small free-standing Ni clusters have been widely investigated during the last decade, but not many of their derived chalcogenides, despite their interest in technology and the new prospects that the nanoscale may open. The present work uncovers the effects of the S-doping on the structural, electronic, and magnetic properties of \(\hbox {Ni}_n\), n = 1–10 clusters. Density functional theoretical calculations within the generalized gradient approximation for the exchange and correlation were conducted to explore the structural, electronic, and magnetic properties of the resulting \(\hbox {Ni}_n\hbox {S}\) chalcogenide nanoparticles. The sulfur impurity is always adsorbed on the threefold hollow sites available on the nickel host, in qualitative agreement with recent results of S adsorption on Ni(111) surfaces. S-doping tends to enlarge the average Ni–Ni inter-atomic distance but enhances the thermodynamical stability of Ni clusters. It also increases the vertical ionization energy and electron affinity. However, S-doping has a small effect on the magnetism of small Ni clusters. According to the spin-dependent HOMO–LUMO gap, most of these clusters are good candidates as molecular junctions for spin filtering at low bias voltage.


Ab initio calculations Doping Electronic properties Magnetic properties Nickel Sulfur 



This study was funded by the Algerian Ministry of Higher Education and Scientific Research via the project CNEPRU B00L02UN150120130013 and by the Junta de Castilla y León (Spain) (Project VA124G18).


  1. 1.
    Tikhomirov VK, Asatryan K, Galstian TV, Vallee R, Seddon AB (2003) Philos Mag Lett 83:117–124CrossRefGoogle Scholar
  2. 2.
    Jain PK, Deepika KS, Saxena NS (2009) Philos Mag 89:641–650CrossRefGoogle Scholar
  3. 3.
    Zogg H, Arnold M (2006) Opto Electron Rev 14:33–36CrossRefGoogle Scholar
  4. 4.
    Ruxandra V (1997) J Mater Sci Lett 16:1833–1835CrossRefGoogle Scholar
  5. 5.
    Li K, Wee ATS, Lin J, Tan KL, Zhou L, Li SFY, Feng ZC, Chou HC, Kamra S, Rohatgi A (1997) J Mater Sci Mater Electron 8:125–132CrossRefGoogle Scholar
  6. 6.
    Hartley A, Irvine SJC (2000) J Mater Sci Mater Electron 11:569–573CrossRefGoogle Scholar
  7. 7.
    Mane RS, Lokhande CD (2000) Mater Chem Phys 65:1–31CrossRefGoogle Scholar
  8. 8.
    Köckerling M, Johrendt D, Finckh EW (1998) J Am Chem Soc 120:12297CrossRefGoogle Scholar
  9. 9.
    Chevrel R, Hirrien M, Sergent M (1986) Polyhedron 5:87CrossRefGoogle Scholar
  10. 10.
    Stiefel EI, Matsumoto K (1996) ACS Symp Ser 653:2CrossRefGoogle Scholar
  11. 11.
    Krebs B, Henkel G (1991) Angew Chem Int Ed Engl 30:769CrossRefGoogle Scholar
  12. 12.
    Harris S, Chianelli RR (1984) J Catal 86:400CrossRefGoogle Scholar
  13. 13.
    Prins R, de Beer VHG, Somorjai GA (1989) Catal Rev Sci Eng 31:1CrossRefGoogle Scholar
  14. 14.
    Paskach TJ, Schrader GL, McCarley RE (2002) J Catal 211:285CrossRefGoogle Scholar
  15. 15.
    Mlynarski P, Salahub DR (1991) J Chem Phys 95:6050CrossRefGoogle Scholar
  16. 16.
    Jellinek J, Garzón IL (1991) Z Phys D 20:239CrossRefGoogle Scholar
  17. 17.
    Stave MS, DePristo AE (1992) J Chem Phys 20:3386CrossRefGoogle Scholar
  18. 18.
    Garzón IL, Jellinek JJ (1992) In: Jena P, Khanna SN, Rao BK (eds) Physics and chemistry of fine systems, from clusters to crystals, vol 1. Kluwer Academic, Dordrecht, p 405CrossRefGoogle Scholar
  19. 19.
    López MJ, Jellinek J (1994) Phys Rev A 50:1445CrossRefGoogle Scholar
  20. 20.
    Menon M, Connolly J, Lathiotakis N, Andriotis A (1994) Phys Rev B 50:8903CrossRefGoogle Scholar
  21. 21.
    Lathiotakis NN, Andriotis AN, Menon M, Connolly J (1996) J Chem Phys 104:992CrossRefGoogle Scholar
  22. 22.
    Bouarab S, Vega A, Lopéz MJ, Iñiguez MP, Alonso J (1996) Phys Rev B 55:13279CrossRefGoogle Scholar
  23. 23.
    Castro M, Jamorski C, Salahub DR (1997) Chem Phys Lett 271:133CrossRefGoogle Scholar
  24. 24.
    Reuse F, Khanna SN (1995) Chem Phys Lett 234:77CrossRefGoogle Scholar
  25. 25.
    Nayak SK, Rao BK, Jena P (1997) J Phys Chem A 101:1072CrossRefGoogle Scholar
  26. 26.
    Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1998) J Phys Chem A 102:1748CrossRefGoogle Scholar
  27. 27.
    Doye JPK, Wales DJ (1998) New J Chem 22:733CrossRefGoogle Scholar
  28. 28.
    Curotto E, Matro A, Freeman DL, Doll JD (1998) J Chem Phys 108:729CrossRefGoogle Scholar
  29. 29.
    Michaelian K, Rend N, Garz IL (1999) Phys Rev B 60:2000CrossRefGoogle Scholar
  30. 30.
    Xiang Y, Sun DY, Gong XG (2000) J Phys Chem A 104:2746CrossRefGoogle Scholar
  31. 31.
    Khanna SN, Beltran M, Jena P (2001) Phys Rev B 64:235419CrossRefGoogle Scholar
  32. 32.
    Michelini MC, Pis Diez R, Jubert AH (2001) Int J Quantum Chem 85:22CrossRefGoogle Scholar
  33. 33.
    Duan HM, Gong XG, Zheng QQ, Lin HQ (2001) J Appl Phys 89:7308CrossRefGoogle Scholar
  34. 34.
    Luo CL (2002) Mater Sci Eng 10:13Google Scholar
  35. 35.
    Ashman C, Khanna SN, Pederson MR (2003) Chem Phys Lett 368:257CrossRefGoogle Scholar
  36. 36.
    Grigoryan VG, Spingborg M (2004) Phys Rev B 70:205415CrossRefGoogle Scholar
  37. 37.
    Xie Z, Ma QM, Liu Y, Li YC (2005) Phys Lett A 342:459CrossRefGoogle Scholar
  38. 38.
    Aguilera-Granja JM, Montejano-Carrizales RA, Guirado-Lpez RA (2006) Phys Rev B 73:115422CrossRefGoogle Scholar
  39. 39.
    Deshpandre MD, Roy S, Kanhere DG (2007) Phys Rev B 76:195423CrossRefGoogle Scholar
  40. 40.
    Yao YH, Gu X, Ji M, Gong XG, Wang DS (2007) Phys Lett A 360:629CrossRefGoogle Scholar
  41. 41.
    Lee B, Lee GW (2007) J Chem Phys 127:164316CrossRefGoogle Scholar
  42. 42.
    Lu QL, Luo QQ, Chen LL, Wan JG (2011) Eur Phys J D 61:389CrossRefGoogle Scholar
  43. 43.
    Chikhaoui A, Haddab K, Bouarab S, Vega A (2011) J Phys Chem A 115:1399714005CrossRefGoogle Scholar
  44. 44.
    Knickelbein MB, Yang S, Riley SJ (1990) J Chem Phys 93:94CrossRefGoogle Scholar
  45. 45.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HFIII, Nandi S, Ellison GB (2002) Chem Rev 102:231CrossRefGoogle Scholar
  46. 46.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  47. 47.
    Perdew JP, Burke K, Ernzerhoh M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  48. 48.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  49. 49.
    Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908CrossRefGoogle Scholar
  50. 50.
    Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204–7CrossRefGoogle Scholar
  51. 51.
    Tazibt S, Chikhaoui A, Bouarab S, Vega A (2017) J Phys Chem A 121:3768–3780CrossRefGoogle Scholar
  52. 52.
    Vaidya N, Indian J (1976) Pure Appl Phys 14:600Google Scholar
  53. 53.
    Pinegar JC, Langenberg JD, Arrington CA, Spain EM, Morse MD (1995) Chem Phys 102:666Google Scholar
  54. 54.
    Wang H, Haouari H, Craig R, Lombardi JR, Lindsay DM (1996) J Chem Phys 104:3420CrossRefGoogle Scholar
  55. 55.
    Ahmed F, Nixon ER (1979) J Chem Phys 71:3547CrossRefGoogle Scholar
  56. 56.
    Soler JM, Artacho E, Gale JD, Garca A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745CrossRefGoogle Scholar
  57. 57.
    Ordejon P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441CrossRefGoogle Scholar
  58. 58.
    Kandaskalov D, Monceau D, Mijoule C, Damien (2013) Surf Sci 617:15–21CrossRefGoogle Scholar
  59. 59.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  60. 60.
    Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Phys Rev Lett 76:1441CrossRefGoogle Scholar
  61. 61.
    Nagarajan V, Chandiramouli R, Sriram S, Gopinath P (2014) J Nanostruct Chem 4:87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique et Chimie Quantique, Faculté des SciencesUniversité Mouloud Mammeri de Tizi-OuzouTizi-OuzouAlgeria
  2. 2.Departamento de Física Teórica, Atómica y ÓpticaUniversidad de ValladolidValladolidSpain

Personalised recommendations