Theoretical spectroscopy of a NIR-absorbing benziphthalocyanine dye

  • Pauline M. Verite
  • Cloé Azarias
  • Denis Jacquemin
Regular Article
  • 86 Downloads
Part of the following topical collections:
  1. Festschrift in honour of A. Rizzo

Abstract

Benziphthalocyanines are (Yanai et al. in Chem Phys Lett 393:51–57, 2004) phthalocyanines in which one isoindoline unit has been replaced by a phenyl ring. In this study, we focus on a macrocycle of this family recently synthesized by Uchiyama and co-workers (Toriumi et al. Angew Chem Int Ed 53:7814–7818, 2014), and composed of three indoline units (substituted with 2,6-diisopropylphenyl-oxy groups) and one resorcinol unit. We aim at characterizing the possible tautomers to evaluate whether this compound might exist as a mixture of several forms or not. To reach our goals, we use state-of-the-art ab initio theories, i.e., Time-Dependent Density Functional Theory coupled with a refined solvation model (the Polarizable Continuum Model) as well as post-Hartree Fock approaches. We first investigate the stability, the structure and the aromaticity of the possible tautomers before analyzing their spectroscopic signatures. Using an approach going beyond the vertical approximation, we compare experimental and theoretical 0–0 energies and band shapes. This study allows us to point out the dominant presence of the quinoidal form as well as to unravel the vibronic contributions responsible for the specific shape of the optical spectrum.

Keywords

TD-DFT CC2 Macrocycles Optical spectra 

Notes

Acknowledgements

The authors are indebted to Dr. C. A. Guido for his help with the FCHT spectra. P. M. V and D. J. thank the ANR for support in the framework of the GEDEMI Grant. C. A. and D. J. received support from the ANR in the framework of the EMA Grant. This research used resources of (i) the GENCI-CINES/IDRIS; (ii) CCIPL (Centre de Calcul Intensif des Pays de Loire); (iii) a local Troy cluster and (iv) HPC resources from ArronaxPlus (Grant ANR-11-EQPX-0004 funded by the French National Agency for Research).

Supplementary material

214_2018_2237_MOESM1_ESM.pdf (420 kb)
Supplementary material 1 (pdf 420 KB)

References

  1. 1.
    Ruggli P (1912) Justus Liebigs Ann Chem 392:92–100CrossRefGoogle Scholar
  2. 2.
    Claessens CG, Hahn U, Torres T (2008) Chem Rev 8:75–97Google Scholar
  3. 3.
    Bao Z, Lovinger AJ, Dodabalapur A (1996) Appl Phys Lett 69:3066–3068CrossRefGoogle Scholar
  4. 4.
    Rio Y, Salome M, Rodriguez-Morgade, Torres T (2008) Org Biomol Chem 6:1877–1894CrossRefGoogle Scholar
  5. 5.
    Bonnett R (1995) Chem Soc Rev 24:19–33CrossRefGoogle Scholar
  6. 6.
    Bottari G, de la Torre G, Guldi DM, Torres T (2010) Chem Rev 110:6768–6816CrossRefGoogle Scholar
  7. 7.
    Gouterman M (1961) J Mol Spectrosc 6:138–163CrossRefGoogle Scholar
  8. 8.
    Mack J (2017) Chem Rev 117:3444–3478CrossRefGoogle Scholar
  9. 9.
    Zhou Z, Shen Z (2015) J Mater Chem C 3:3239–3251CrossRefGoogle Scholar
  10. 10.
    Szyszko B, Latos-Grazynski L (2015) Chem Soc Rev 44:3588–3616CrossRefGoogle Scholar
  11. 11.
    Elvidge JA, Golden JH (1957) J Chem Soc 1957:700–709Google Scholar
  12. 12.
    Toriumi N, Muranaka A, Hirano K, Yoshida K, Hashizume D, Uchiyama M (2014) Angew Chem Int Ed 53:7814–7818CrossRefGoogle Scholar
  13. 13.
    Costa R, Schick AJ, Paul NB, Durfee WS, Ziegler CJ (2011) New J Chem 35:794–799CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J (2009) Fox DJ Gaussian 09 revision D.01, Gaussian Inc. Wallingford CTGoogle Scholar
  15. 15.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  16. 16.
    Adamo C, Barone V (1999) J Chem Phys 110(13):6158–6170CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1):215–241CrossRefGoogle Scholar
  18. 18.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  19. 19.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  20. 20.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  21. 21.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  22. 22.
    Hättig C (2003) J Chem Phys 118:7751–7761CrossRefGoogle Scholar
  23. 23.
    TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com
  24. 24.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, von Ragué Schleyer P (2005) Chem Rev 105:3842–3888CrossRefGoogle Scholar
  25. 25.
    Azarias C, Jacquemin D (2016) J Phys Chem A 120:2824–2831CrossRefGoogle Scholar
  26. 26.
    Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) J Chem Phys 124:124520CrossRefGoogle Scholar
  27. 27.
    Cammi R, Mennucci B (1999) J Chem Phys 110:9877–9886CrossRefGoogle Scholar
  28. 28.
    Cossi M, Barone V (2001) J Chem Phys 115:4708–4717CrossRefGoogle Scholar
  29. 29.
    Dreuw A, Wormit M (2015) WIREs Comput Mol Sci 5:82–95CrossRefGoogle Scholar
  30. 30.
    Hättig C, Weigend F (2000) J Chem Phys 113:5154–5161CrossRefGoogle Scholar
  31. 31.
    Hättig C (2005) Phys Chem Chem Phys 7:59–66CrossRefGoogle Scholar
  32. 32.
    Santoro F (2011) FCclasses, a fortran 77 code, See: http://village.pi.iccom.cnr.it. Accessed 15 June 2017
  33. 33.
    Santoro F, Improta R, Lami A, Bloino J, Barone V (2007) J Chem Phys 126:084509CrossRefGoogle Scholar
  34. 34.
    Santoro F, Lami A, Improta R, Barone V (2007) J Chem Phys 126:184102CrossRefGoogle Scholar
  35. 35.
    von Ragué Schleyer P, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  36. 36.
    Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623–6630CrossRefGoogle Scholar
  37. 37.
    Jacquemin D, Duchemin I, Blase X (2015) J Chem Theory Comput 11:5340–5359CrossRefGoogle Scholar
  38. 38.
    Oruganti B, Fang C, Durbeej B (2016) Mol Phys 114(23):3448–3463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire CEISAM - UMR CNRS 6230Université de NantesNantes Cedex 3France

Personalised recommendations